主题
Search

外接圆


Circumcircle

外接圆是三角形的外 circumscribed 圆,即唯一穿过三角形三个顶点的。外接圆的圆心 O 称为外心,圆的半径 R 称为外半径。三角形的三条垂直平分线 M_AM_BM_C 交于点 O (Casey 1888, p. 9) (Durell 1928)。斯坦纳点 S塔里点 T 位于外接圆上。

多边形的外接圆是 solid 的外接球体的二维情况。

外接圆可以使用三线坐标指定为

 abetagamma+bgammaalpha+calphabeta=0
(1)

(Kimberling 1998, pp. 39 和 219)。扩展 Kimberling (1998, p. 228) 的列表,外接圆穿过 Kimberling 中心 X_i,其中 i=74, 98 (塔里点), 99 (斯坦纳点), 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 (的焦点Kiepert 抛物线), 111 (Parry 点), 112, 476 (Tixier 点), 477, 675, 681, 689, 691, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, 743, 745, 747, 753, 755, 759, 761, 767, 769, 773, 777, 779, 781, 783, 785, 787, 789, 791, 793, 795, 797, 803, 805, 807, 809, 813, 815, 817, 819, 825, 827, 831, 833, 835, 839, 840, 841, 842, 843, 898, 901, 907, 915, 917, 919, 925, 927, 929, 930, 931, 932, 933, 934, 935, 953, 972, 1113, 1114, 1141 (Gibert 点), 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1379, 1380, 1381, 1382, 1477, 2222, 2249, 2291, 2365, 2366, 2367, 2368, 2369, 2370, 2371, 2372, 2373, 2374, 2375, 2376, 2377, 2378, 2379, 2380, 2381, 2382, 2383, 2384, 2687, 2688, 2689, 2690, 2691, 2692, 2693, 2694, 2695, 2696, 2697, 2698, 2699, 2700, 2701, 2702, 2703, 2704, 2705, 2706, 2707, 2708, 2709, 2710, 2711, 2712, 2713, 2714, 2715, 2716, 2717, 2718, 2719, 2720, 2721, 2722, 2723, 2724, 2725, 2726, 2727, 2728, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2739, 2740, 2741, 2742, 2743, 2744, 2745, 2746, 2747, 2748, 2749, 2750, 2751, 2752, 2753, 2754, 2755, 2756, 2757, 2758, 2759, 2760, 2761, 2762, 2763, 2764, 2765, 2766, 2767, 2768, 2769, 2770, 2855, 2856, 2857, 2858, 2859, 2860, 2861, 2862, 2863, 2864, 2865, 2866, 2867 和 2868。

它与 Parry 圆Stevanović 圆正交

外接圆的极三角形切线三角形

外接圆是的反补 九点圆

SimsonLine
CircumcircleOrthoLine

当在外接圆上取任意点 P 时,则从 P三角形边(或其延长线)的垂足 P_1P_2P_3 共线于一条称为西姆森线的直线上。此外,对于外接圆上的任意点 P,关于三角形边 BCACAB 的反射点 P_AP_BP_C 共线,不仅彼此共线,而且与垂心 H 共线 (Honsberger 1995, pp. 44-47)。

三角形外接圆在顶点处的切线与对边反平行垂足三角形的边与外接圆在顶点处的切线平行,并且外接圆在顶点处的半径垂直于所有与对边反平行的直线 (Johnson 1929, pp. 172-173)。

Pedoe (1995, pp. xii-xiii) 给出了外接圆的几何作图方法。顶点为 (x_i,y_i)i=1, 2, 3 的三角形的外接圆方程为

 |x^2+y^2 x y 1; x_1^2+y_1^2 x_1 y_1 1; x_2^2+y_2^2 x_2 y_2 1; x_3^2+y_3^2 x_3 y_3 1|=0.
(2)

展开行列式

 a(x^2+y^2)+b_xx+b_yy+c=0,
(3)

其中

 a=|x_1 y_1 1; x_2 y_2 1; x_3 y_3 1|,
(4)

b_x 是从矩阵获得的行列式

 D=[x_1^2+y_1^2 x_1 y_1 1; x_2^2+y_2^2 x_2 y_2 1; x_3^2+y_3^2 x_3 y_3 1]
(5)

通过丢弃 x_i 列(并取负号)获得,b_y 类似(这次取正号),

b_x=-|x_1^2+y_1^2 y_1 1; x_2^2+y_2^2 y_2 1; x_3^2+y_3^2 y_3 1|
(6)
b_y=|x_1^2+y_1^2 x_1 1; x_2^2+y_2^2 x_2 1; x_3^2+y_3^2 x_3 1|,
(7)

c 由下式给出

 c=-|x_1^2+y_1^2 x_1 y_1; x_2^2+y_2^2 x_2 y_2; x_3^2+y_3^2 x_3 y_3|.
(8)

配方得到

 a(x+(b_x)/(2a))^2+a(y+(b_y)/(2a))^2-(b_x^2)/(4a)-(b_y^2)/(4a)+c=0
(9)

这是一个形式为

 (x-x_0)^2+(y-y_0)^2=r^2,
(10)

具有外心

x_0=-(b_x)/(2a)
(11)
y_0=-(b_y)/(2a)
(12)

外半径

 r=(sqrt(b_x^2+b_y^2-4ac))/(2|a|).
(13)

精确三线坐标 (alpha,beta,gamma) 中,穿过三个非共线点(其精确三线坐标(alpha_1,beta_1,gamma_1)(alpha_2,beta_2,gamma_2)(alpha_3,beta_3,gamma_3))的圆的方程为

 |abetagamma+bgammaalpha+calphabeta alpha beta gamma; abeta_1gamma_1+bgamma_1alpha_1+calpha_1beta_1 alpha_1 beta_1 gamma_1; abeta_2gamma_2+bgamma_2alpha_2+calpha_2beta_2 alpha_2 beta_2 gamma_2; abeta_3gamma_3+bgamma_3alpha_3+calpha_3beta_3 alpha_3 beta_3 gamma_3|=0
(14)

(Kimberling 1998, p. 222)。

如果边长为 abc、 ... 且标准三线方程为 alpha=0beta=0gamma=0、 ... 的多边形有外接圆,则对于圆上的任何点,

 a/alpha+b/beta+c/gamma+...=0
(15)

(Casey 1878, 1893)。

下表总结了一些已命名三角形的已命名外接圆。

三角形外接圆
反补三角形反补圆
circum-medial triangle外接圆
circumnormal triangle外接圆
circum-orthic triangle外接圆
circumcircle mid-arc triangle外接圆
接触三角形内切圆
D-三角形orthocentroidal circle
Euler-Gergonne-Soddy triangleEuler-Gergonne-Soddy circle
欧拉三角形九点圆
外心三角形Bevan 圆
extangents triangleextangents circle
外切三角形Mandart 圆
Feuerbach 三角形九点圆
first Brocard triangleBrocard 圆
first Morley triangleMorley's 圆
first Neuberg trianglefirst Neuberg 圆
Fuhrmann 三角形Fuhrmann 圆
half-altitude trianglehalf-altitude circle
hexyl trianglehexyl circle
内心三角形incentral circle
inner Napoleon triangleinner Napoleon circle
inner Vecten triangleinner Vecten circle
intangents triangleintangents circle
Lemoine trianglethird Lemoine circle
Lucas central triangleLucas central circle
Lucas inner triangleLucas inner triangle
Lucas tangents triangleLucas circles radical circle
medial triangle九点圆
mid-arc triangle内切圆
mixtilinear trianglemixtilinear circle
垂足三角形九点圆
outer Napoleon triangleouter Napoleon circle
outer Vecten triangleouter Vecten circle
reference triangle外接圆
反射三角形反射圆
second Brocard triangleBrocard 圆
second Neuberg trianglesecond Neuberg circle
Stammler triangleStammler circle
Steiner trianglesecond Steiner circle
symmedial trianglesymmedial circle
tangential mid-arc triangletangential mid-arc circle
切线三角形切线圆
Yff central triangleYff central circle
Yff contact triangleYff contact circle
Yiu triangleYiu Circle

另请参阅

切维安圆, , 外心, 外半径, 外接球, 外包圆, 旁切圆, 内切圆, 最小外包圆, Parry 点, 枢轴定理, Purser 定理, 西姆森线, 斯坦纳点, 塔里点

使用 Wolfram|Alpha 探索

参考文献

Casey, J. "On the Equations of Circles (Second Memoir)." Trans. Roy. Irish Acad. 26, 527-610, 1878.Casey, J. A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges, Figgis, & Co., 1888.Casey, J. A Treatise on the Analytical Geometry of the Point, Line, Circle, and Conic Sections, Containing an Account of Its Most Recent Extensions, with Numerous Examples, 2nd ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp. 128-129, 1893.Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., p. 7, 1967.Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, pp. 19-20, 1928.Honsberger, R. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., 1995.Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Lachlan, R. "The Circumcircle." §118-122 in An Elementary Treatise on Modern Pure Geometry. London: Macmillian, pp. 66-70, 1893.Pedoe, D. Circles: A Mathematical View, rev. ed. Washington, DC: Math. Assoc. Amer., 1995.

在 Wolfram|Alpha 中被引用

外接圆

引用为

Weisstein, Eric W. "外接圆。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/Circumcircle.html

主题分类