常微分方程(通常称为“ODE”,“diff eq”或“diffy Q”)是包含函数及其导数的等式。
阶ODE是如下形式的方程
![F(x,y,y^',...,y^((n)))=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation1.svg) |
(1)
|
其中
是
的函数,
是关于
的一阶导数,而
是关于
的第
阶导数。
如果已知齐次版本的通解,则可以求解非齐次常微分方程,在这种情况下,可以使用待定系数法或参数变分法来找到特解。
许多常微分方程可以使用 Wolfram 语言精确求解,使用DSolve[eqn, y, x],以及使用NDSolve[eqn, y,
x, xmin, xmax
] 进行数值求解。
如果
阶ODE是如下形式,则称其为线性ODE
![a_n(x)y^((n))+a_(n-1)(x)y^((n-1))+...+a_1(x)y^'+a_0(x)y=Q(x).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation2.svg) |
(2)
|
其中
的线性ODE被称为齐次的。 令人困惑的是,如下形式的ODE
![y^'=f(y/x)](/images/equations/OrdinaryDifferentialEquation/NumberedEquation3.svg) |
(3)
|
有时也称为“齐次”。
一般来说,一个
阶ODE有
个线性无关的解。 此外,线性无关函数解的任何线性组合也是一个解。
对于一阶(积分因子)和二阶(Sturm-Liouville 理论)常微分方程,以及具有线性常数系数的任意ODE,当它们具有某些可分解形式时,存在简单的理论。 诸如拉普拉斯变换之类的积分变换也可以用于求解线性ODE的类别。 Morse 和 Feshbach (1953, pp. 667-674) 给出了二阶常微分方程的规范形式和解。
虽然有许多通用技术可以分析求解各类ODE,但对于复杂方程,唯一实用的求解技术是使用数值方法(Milne 1970,Jeffreys 和 Jeffreys 1988)。 其中最流行的是Runge-Kutta 方法,但也开发了许多其他方法,包括配置法和Galerkin 方法。 大量的研究和大量的出版物致力于微分方程(包括常微分方程和偏微分方程 (PDE))的数值解,这是因为它们在物理学、工程学、经济学和电子学等不同领域中的重要性。
ODE的解满足存在性和唯一性性质。 这些可以通过某些ODE类别的皮卡德存在定理正式确立。 设一个一阶ODE系统由下式给出
![(dx_i)/(dt)=f_i(x_1,...,x_n,t),](/images/equations/OrdinaryDifferentialEquation/NumberedEquation4.svg) |
(4)
|
对于
, ...,
,并令函数
,其中
, ...,
,全部在变量
, ...,
,
的
维空间的域
中定义。 设这些函数在
中连续,并且具有连续的一阶偏导数
对于
, ...,
和
, ...,
在
中。 令
在
中。 那么存在一个解 (4) 由下式给出
![x_1=x_1(t),...,x_n=x_n(t)](/images/equations/OrdinaryDifferentialEquation/NumberedEquation5.svg) |
(5)
|
对于
(其中
),满足初始条件
![x_1(t_0)=x_1^0,...,x_n(t_0)=x_n^0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation6.svg) |
(6)
|
此外,解是唯一的,因此如果
![x_1=x_1^*(t),...,x_n=x_n^*(t)](/images/equations/OrdinaryDifferentialEquation/NumberedEquation7.svg) |
(7)
|
是 (◇) 对于
且满足 (◇) 的第二个解,那么
对于
。 因为每个
阶ODE可以表示为
个一阶ODE的系统,所以该定理也适用于单个
阶ODE。
恰当一阶常微分方程是如下形式的一种
![p(x,y)dx+q(x,y)dy=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation8.svg) |
(8)
|
其中
![(partialp)/(partialy)=(partialq)/(partialx).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation9.svg) |
(9)
|
形式为 (◇) 且满足
![(partialp)/(partialy)!=(partialq)/(partialx)](/images/equations/OrdinaryDifferentialEquation/NumberedEquation10.svg) |
(10)
|
的方程被称为非恰当的。 如果
![((partialp)/(partialy)-(partialq)/(partialx))/q=f(x)](/images/equations/OrdinaryDifferentialEquation/NumberedEquation11.svg) |
(11)
|
在 (◇) 中,它具有一个依赖于
的积分因子。 如果
![((partialq)/(partialx)-(partialp)/(partialy))/(xp-yq)=f(xy)](/images/equations/OrdinaryDifferentialEquation/NumberedEquation12.svg) |
(12)
|
在 (◇) 中,它具有一个依赖于
的积分因子。 如果
![((partialq)/(partialx)-(partialp)/(partialy))/p=f(y)](/images/equations/OrdinaryDifferentialEquation/NumberedEquation13.svg) |
(13)
|
在 (◇) 中,它具有一个依赖于
的积分因子。
其他特殊的一阶类型包括交叉乘积方程
![yf(xy)dx+xg(xy)dy=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation14.svg) |
(14)
|
齐次方程
![y^'=f(y/x),](/images/equations/OrdinaryDifferentialEquation/NumberedEquation15.svg) |
(15)
|
线性方程
![y^'+p(x)y=q(x),](/images/equations/OrdinaryDifferentialEquation/NumberedEquation16.svg) |
(16)
|
和可分离方程
![y^'=X(x)Y(y).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation17.svg) |
(17)
|
二阶常微分方程的特殊类别包括
![y^('')=f(y,y^')](/images/equations/OrdinaryDifferentialEquation/NumberedEquation18.svg) |
(18)
|
(缺少
)和
![y^('')=f(x,y^')](/images/equations/OrdinaryDifferentialEquation/NumberedEquation19.svg) |
(19)
|
(缺少
)。 二阶线性齐次ODE
![y^('')+P(x)y^'+Q(x)y=0](/images/equations/OrdinaryDifferentialEquation/NumberedEquation20.svg) |
(20)
|
对于其
![(Q^'(x)+2P(x)Q(x))/(2[Q(x)]^(3/2))=[constant]](/images/equations/OrdinaryDifferentialEquation/NumberedEquation21.svg) |
(21)
|
可以转换为具有常系数的方程。
简谐运动的无阻尼方程为
![y^('')+omega_0^2y=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation22.svg) |
(22)
|
变为
![y^('')+betay^'+omega_0^2y=0](/images/equations/OrdinaryDifferentialEquation/NumberedEquation23.svg) |
(23)
|
当阻尼时,以及
![y^('')+betay^'+omega_0^2y=Acos(omegat+delta)](/images/equations/OrdinaryDifferentialEquation/NumberedEquation24.svg) |
(24)
|
当同时存在强迫和阻尼时。
具有常系数的系统的形式为
![(dx)/(dt)=Ax(t)+p(t).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation25.svg) |
(25)
|
以下是数学物理问题中常见的重要的常微分方程示例。
阿贝尔微分方程
![y^'=f_0(x)+f_1(x)y+f_2(x)y^2+f_3(x)y^3+...](/images/equations/OrdinaryDifferentialEquation/NumberedEquation26.svg) |
(26)
|
![[g_0(x)+g_1(x)y]y^'=f_0(x)+f_1(x)y+f_2(x)y^2+f_3(x)y^3.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation27.svg) |
(27)
|
艾里微分方程
![y^('')-xy=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation28.svg) |
(28)
|
安格尔微分方程
![y^('')+(y^')/x+(1-(nu^2)/(x^2))y=(x-nu)/(pix^2)sin(nupi).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation29.svg) |
(29)
|
贝尔微分方程
![(x-a_1)(x-a_2)y^('')+1/2[2x-(a_1+a_2)]y^'-(p^2x+q^2)y=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation30.svg) |
(30)
|
![(x-a_1)(x-a_2)y^('')+1/2[2x-(a_1+a_2)]y^'-(k^2x^2-p^2x+q^2)y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation31.svg) |
(31)
|
伯努利微分方程
![y^'+p(x)y=q(x)y^n.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation32.svg) |
(32)
|
贝塞尔微分方程
![x^2y^('')+xy^'+(lambda^2x^2-n^2)y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation33.svg) |
(33)
|
二项微分方程
![(y^')^m=f(x,y).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation34.svg) |
(34)
|
伯cher方程
![y^('')+1/2[(m_1)/(x-a_1)+...+(m_(n-1))/(x-a_(n-1))]y^'
+1/4[(A_0+A_1x+...+A_lx^l)/((x-a_1)^(m_1)(x-a_2)^(m_2)...(x-a_(n-1))^(m_(n-1)))]y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation35.svg) |
(35)
|
布里奥-布克方程
![x^my^'=f(x,y).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation36.svg) |
(36)
|
切比雪夫微分方程
![(1-x^2)y^('')-xy^'+alpha^2y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation37.svg) |
(37)
|
克莱罗微分方程
![y=xy^'+f(y^').](/images/equations/OrdinaryDifferentialEquation/NumberedEquation38.svg) |
(38)
|
合流超几何微分方程
![xy^('')+(c-x)y^'-ay=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation39.svg) |
(39)
|
达朗贝尔方程
![y=xf(y^')+g(y^').](/images/equations/OrdinaryDifferentialEquation/NumberedEquation40.svg) |
(40)
|
杜芬微分方程
![y^('')+omega_0^2y+betay^3=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation41.svg) |
(41)
|
埃卡特微分方程
![y^('')+[(alphaeta)/(1+eta)+(betaeta)/((1+eta)^2)+gamma]y=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation42.svg) |
(42)
|
其中
。
埃姆登-福勒微分方程
![(x^py^')^'+/-x^sigmay^n=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation43.svg) |
(43)
|
欧拉微分方程
![x^2y^('')+axy^'+by=S(x).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation44.svg) |
(44)
|
哈尔姆微分方程
![(1+x^2)^2+y^('')+lambday=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation45.svg) |
(45)
|
埃尔米特微分方程
![y^('')-2xy^'+lambday=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation46.svg) |
(46)
|
海恩微分方程
![w^('')+(gamma/x+delta/(x-1)+epsilon/(x-a))w^'+(alphabetax-q)/(x(x-1)(x-a))w=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation47.svg) |
(47)
|
其中
。
希尔微分方程
![y^('')+[theta_0+2sum_(n=1)^inftytheta_ncos(2nz)]y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation48.svg) |
(48)
|
超几何微分方程
![x(x-1)y^('')+[(1+alpha+beta)x-gamma]y^'+alphabetay=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation49.svg) |
(49)
|
雅可比微分方程
![(1-x^2)y^('')+[beta-alpha-(alpha+beta+2)x]y^'+n(n+alpha+beta+1)y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation50.svg) |
(50)
|
拉盖尔微分方程
![xy^('')+(1-x)y^'+lambday=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation51.svg) |
(51)
|
拉梅微分方程
![(x^2-b^2)(x^2-c^2)z^('')+x(x^2-b^2+x^2-c^2)z^'-[m(m+1)x^2-(b^2+c^2)p]z=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation52.svg) |
(52)
|
其中
。
莱恩-埃姆登微分方程
![1/(xi^2)d/(dxi)(xi^2(dtheta)/(dxi))+theta^n=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation53.svg) |
(53)
|
勒让德微分方程
![(1-x^2)y^('')-2xy^'+alpha(alpha+1)y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation54.svg) |
(54)
|
线性常系数
![a_0y^((n))+...+a_(n-1)y^'+a_ny=p(x).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation55.svg) |
(55)
|
洛梅尔微分方程
![x^2y^('')+xy^'-(x^2+nu^2)y=kx^(mu+1).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation56.svg) |
(56)
|
洛纳微分方程
![y^'=-y(1+kappa(x)y)/(1-kappa(x)y).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation57.svg) |
(57)
|
马尔姆斯滕微分方程
![y^('')+r/zy^'=(Az^m+s/(z^2))y.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation58.svg) |
(58)
|
马蒂厄微分方程
![V^('')+[a-2qcos(2v)]V=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation59.svg) |
(59)
|
其中
。
修正贝塞尔微分方程
![x^2y^('')+xy^'-(x^2+n^2)y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation60.svg) |
(60)
|
修正球贝塞尔微分方程
![r^2R^('')+2rR^'-[k^2r^2+n(n+1)]R=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation61.svg) |
(61)
|
其中 ![R^'=dR/dr](/images/equations/OrdinaryDifferentialEquation/Inline51.svg)
瑞利微分方程
![y^('')-mu(1-1/3y^('2))y^'+y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation62.svg) |
(62)
|
里卡蒂微分方程
![w^'=q_0(x)+q_1(x)w+q_2(x)w^2.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation63.svg) |
(63)
|
黎曼P-微分方程
![u^('')+[(1-alpha-alpha^')/(z-a)+(1-beta-beta^')/(z-b)+(1-gamma-gamma^')/(z-c)]u^'
+[(alphaalpha^'(a-b)(a-c))/(z-a)+(betabeta^'(b-c)(b-a))/(z-b)+(gammagamma^'(c-a)(c-b))/(z-c)]u/((z-a)(z-b)(z-c))=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation64.svg) |
(64)
|
其中
。
夏普微分方程
![zy^('')+y^'+(z+A)y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation65.svg) |
(65)
|
球贝塞尔微分方程
![r^2R^('')+2rR^'+[k^2r^2-n(n+1)]R=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation66.svg) |
(66)
|
其中
。
斯特鲁微分方程
![z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)).](/images/equations/OrdinaryDifferentialEquation/NumberedEquation67.svg) |
(67)
|
斯特姆-刘维尔方程
![d/(dx)[p(x)y^']+[lambdaw(x)-q(x)]y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation68.svg) |
(68)
|
盖根鲍尔微分方程
![(1-x^2)y^('')-(2alpha+1)xy^'+n(n+2alpha)y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation69.svg) |
(69)
|
范德波尔方程
![y^('')-mu(1-y^2)y^'+y=0.](/images/equations/OrdinaryDifferentialEquation/NumberedEquation70.svg) |
(70)
|
韦伯微分方程
![y^('')+(n+1/2-1/4z^2)y=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation71.svg) |
(71)
|
其中
。
惠特克微分方程
![u^('')+u^'+(k/z+(1/4-m^2)/(z^2))u=0,](/images/equations/OrdinaryDifferentialEquation/NumberedEquation72.svg) |
(72)
|
其中
。
参见
亚当斯方法,
一阶常微分方程,
格林函数,
等斜线,
拉普拉斯变换,
主导阶分析,
强函数,
偏微分方程,
松弛法,
龙格-库塔方法,
二阶常微分方程,
简谐运动,
待定系数法,
参数变分法 在 MathWorld 课堂中探索此主题
使用 Wolfram|Alpha 探索
参考文献
Boyce, W. E. 和 DiPrima, R. C. Elementary Differential Equations and Boundary Value Problems, 5th ed. New York: Wiley, 1992.Braun, M. Differential Equations and Their Applications, 4th ed. New York: Springer-Verlag, 1993.Carroll, J. "A Composite Integration Scheme for the Numerical Solution of Systems of Ordinary Differential Equations." J. Comput. Appl. Math. 25, 1-13, 1989.Coddington, E. A. An Introduction to Ordinary Differential Equations. New York: Dover, 1989.Forsyth, A. R. Theory of Differential Equations, 6 vols. New York: Dover, 1959.Forsyth, A. R. A Treatise on Differential Equations. New York: Dover, 1997.Fulford, G.; Forrester, P.; 和 Jones, A. Modelling with Differential and Difference Equations. New York: Cambridge University Press, 1997.Guterman, M. M. 和 Nitecki, Z. H. Differential Equations: A First Course, 3rd ed. Philadelphia, PA: Saunders, 1992.Hull, T. E.; Enright, W. H.; Fellen, B. M.; 和 Sedgwick, A. E. "Comparing Numerical Methods for Ordinary Differential Equations." SIAM J. Numer. Anal. 9, 603-637, 1972.Hull, T. E.; Enright, W. H.; Fellen, B. M.; 和 Sedgwick, A. E. "Erratum to 'Comparing Numerical Methods for Ordinary Differential Equations.' " SIAM J. Numer. Anal. 11, 681, 1974.Ince, E. L. Ordinary Differential Equations. New York: Dover, 1956.Jeffreys, H. 和 Jeffreys, B. S. "Numerical Solution of Differential Equations." Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 290-301, 1988.Kamke, E. Differentialgleichungen: Lösungsmethoden und Lösungen, Bd. 1: Gewöhnliche Differentialgleichungen, 9. Aufl. Stuttgart, Germany: Teubner, 1983.Milne, W. E. Numerical Solution of Differential Equations. New York: Dover, 1970.Morse, P. M. 和 Feshbach, H. "Ordinary Differential Equations." Ch. 5 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 492-675, 1953.Moulton, F. R. Differential Equations. New York: Dover, 1958.Polyanin, A. D. 和 Zaitsev, V. F. Handbook of Exact Solutions for Ordinary Differential Equations. Boca Raton, FL: CRC Press, 1995.Postel, F. 和 Zimmermann, P. "A Review of the ODE Solvers of Axiom, Derive, Macsyma, Maple, Mathematica, MuPad, and Reduce." Submitted to The 5th Rhine Workshop on Computer Algebra. July 26, 1996. http://www.loria.fr/~zimmerma/ComputerAlgebra/ode_comp.ps.gz.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; 和 Vetterling, W. T. "Integration of Ordinary Differential Equations." Ch. 16 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 701-744, 1992.Simmons, G. F. Differential Equations, with Applications and Historical Notes, 2nd ed. New York: McGraw-Hill, 1991.Weisstein, E. W. "Books about Ordinary Differential Equations." http://www.ericweisstein.com/encyclopedias/books/OrdinaryDifferentialEquations.html.Zaitsev, V. F. 和 Polyanin, A. D. Spravochnik po obyknovennym differentsial'nym uravneniyam. Moscow: Fizmatlit, 2001.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, 1997.在 Wolfram|Alpha 上被引用
常微分方程
请引用为
Weisstein, Eric W. “常微分方程”。 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/OrdinaryDifferentialEquation.html
学科分类