考虑以下微分方程
![w=z^(-1/2)W_(k,-1/4)(1/2z^2),](/images/equations/WeberDifferentialEquations/NumberedEquation1.svg) |
(1)
|
其中
是一个 惠特克函数,由下式给出
![d/(zdz)[(d(wz^(1/2)))/(zdz)]+(-1/4+(2k)/(z^2)+3/(4z^4))wz^(1/2)=0](/images/equations/WeberDifferentialEquations/NumberedEquation2.svg) |
(2)
|
![(d^2w)/(dz^2)+(2k-1/4z^2)w=0](/images/equations/WeberDifferentialEquations/NumberedEquation3.svg) |
(3)
|
(Moon and Spencer 1961, p. 153; Zwillinger 1997, p. 128)。这通常被改写为
![(d^2D_n(z))/(dz^2)+(n+1/2-1/4z^2)D_n(z)=0.](/images/equations/WeberDifferentialEquations/NumberedEquation4.svg) |
(4)
|
解是抛物柱面函数。
方程
![(d^2U)/(du^2)-(c+k^2u^2)U=0](/images/equations/WeberDifferentialEquations/NumberedEquation5.svg) |
(5)
|
![(d^2V)/(dv^2)+(c-k^2v^2)V=0,](/images/equations/WeberDifferentialEquations/NumberedEquation6.svg) |
(6)
|
通过在拉普拉斯方程在抛物柱面坐标中分离变量而得到的方程,也称为韦伯微分方程。与上述相同,解被称为抛物柱面函数。
Zwillinger (1997, p. 127) 称
![y^('')+(y^')/x+(1-(nu^2)/(x^2))y=-1/(pix^2)[x+nu+(x-nu)cos(nupi)]](/images/equations/WeberDifferentialEquations/NumberedEquation7.svg) |
(7)
|
为韦伯微分方程 (Gradshteyn 和 Ryzhik 2000, p. 989)。
另请参阅
安格尔微分方程,
抛物柱面函数
使用 Wolfram|Alpha 探索
参考文献
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 989, 2000.Moon, P. and Spencer, D. E. Field Theory for Engineers. New York: Van Nostrand, 1961.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 127, 1997.在 Wolfram|Alpha 中被引用
韦伯微分方程
请这样引用
韦斯坦, 埃里克·W. "韦伯微分方程。" 来自 MathWorld--Wolfram 网络资源。 https://mathworld.net.cn/WeberDifferentialEquations.html
学科分类