主题
Search

亚当斯方法


亚当斯方法是一种数值方法,用于求解线性一阶常微分方程 形式为

 (dy)/(dx)=f(x,y).
(1)

 h=x_(n+1)-x_n
(2)

为步长间隔,并考虑 y 关于 x_n麦克劳林级数

 y_(n+1)=y_n+((dy)/(dx))_n(x-x_n)+1/2((d^2y)/(dx^2))_n(x-x_n)^2+...
(3)
 ((dy)/(dx))_(n+1)=((dy)/(dx))_n+((d^2y)/(dx^2))_n(x-x_n)^2+....
(4)

这里,y导数向后差分 给出

q_n=((dy)/(dx))_n=(Deltay_n)/(x_(n+1)-x_n)=(y_(n+1)-y_n)/h
(5)
del q_n=((d^2y)/(dx^2))_n=q_n-q_(n-1)
(6)
del ^2q_n=((d^3y)/(dx^3))_n=del q_n-del q_(n-1),
(7)

等等。注意,根据 (◇),q_n 只是 f(x_n,y_n) 的值。

对于一阶插值,该方法通过迭代表达式进行

 y_(n+1)=y_n+q_nh
(8)

其中 q_n=f(x_n,y_n)。然后可以使用 Beyer (1987) 的有限差分积分公式将该方法扩展到任意阶

 int_0^1f_pdp=(1+1/2del +5/(12)del ^2+3/8del ^3+(251)/(720)del ^4+(95)/(288)del ^5+(19087)/(60480)del ^6+...)f_p
(9)

以获得

 y_(n+1)-y_n=h(q_n+1/2del q_(n-1)+5/(12)del ^2q_(n-2)+3/8del ^3q_(n-3) 
 +(251)/(720)del ^4q_(n-4)+(95)/(288)del ^5q_(n-5)+...).
(10)

请注意,冯·卡门和比奥 (1940) 混淆地使用了通常用于前向差分 delta 的符号来表示 向后差分 del


另请参阅

吉尔方法, 米尔恩方法, 预测-校正方法, 龙格-库塔方法

使用 Wolfram|Alpha 探索

参考文献

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 896, 1972.Bashforth, F. and Adams, J. C. Theories of Capillary Action. London: Cambridge University Press, 1883.Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 455, 1987.Jeffreys, H. and Jeffreys, B. S. "The Adams-Bashforth Method." §9.11 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 292-293, 1988.Kármán, T. von and Biot, M. A. Mathematical Methods in Engineering: An Introduction to the Mathematical Treatment of Engineering Problems. New York: McGraw-Hill, pp. 14-20, 1940.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, p. 741, 1992.Whittaker, E. T. and Robinson, G. "The Numerical Solution of Differential Equations." Ch. 14 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 363-367, 1967.

在 Wolfram|Alpha 中引用

亚当斯方法

请引用为

Eric Weisstein “亚当斯方法。” 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/AdamsMethod.html

学科分类