亚当斯方法是一种数值方法,用于求解线性一阶常微分方程 形式为
![(dy)/(dx)=f(x,y).](/images/equations/AdamsMethod/NumberedEquation1.svg) |
(1)
|
设
![h=x_(n+1)-x_n](/images/equations/AdamsMethod/NumberedEquation2.svg) |
(2)
|
为步长间隔,并考虑
关于
的 麦克劳林级数,
![y_(n+1)=y_n+((dy)/(dx))_n(x-x_n)+1/2((d^2y)/(dx^2))_n(x-x_n)^2+...](/images/equations/AdamsMethod/NumberedEquation3.svg) |
(3)
|
![((dy)/(dx))_(n+1)=((dy)/(dx))_n+((d^2y)/(dx^2))_n(x-x_n)^2+....](/images/equations/AdamsMethod/NumberedEquation4.svg) |
(4)
|
这里,
的 导数 由 向后差分 给出
等等。注意,根据 (◇),
只是
的值。
对于一阶插值,该方法通过迭代表达式进行
![y_(n+1)=y_n+q_nh](/images/equations/AdamsMethod/NumberedEquation5.svg) |
(8)
|
其中
。然后可以使用 Beyer (1987) 的有限差分积分公式将该方法扩展到任意阶
![int_0^1f_pdp=(1+1/2del +5/(12)del ^2+3/8del ^3+(251)/(720)del ^4+(95)/(288)del ^5+(19087)/(60480)del ^6+...)f_p](/images/equations/AdamsMethod/NumberedEquation6.svg) |
(9)
|
以获得
![y_(n+1)-y_n=h(q_n+1/2del q_(n-1)+5/(12)del ^2q_(n-2)+3/8del ^3q_(n-3)
+(251)/(720)del ^4q_(n-4)+(95)/(288)del ^5q_(n-5)+...).](/images/equations/AdamsMethod/NumberedEquation7.svg) |
(10)
|
请注意,冯·卡门和比奥 (1940) 混淆地使用了通常用于前向差分
的符号来表示 向后差分
。
另请参阅
吉尔方法,
米尔恩方法,
预测-校正方法,
龙格-库塔方法
使用 Wolfram|Alpha 探索
参考文献
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 896, 1972.Bashforth, F. and Adams, J. C. Theories of Capillary Action. London: Cambridge University Press, 1883.Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 455, 1987.Jeffreys, H. and Jeffreys, B. S. "The Adams-Bashforth Method." §9.11 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 292-293, 1988.Kármán, T. von and Biot, M. A. Mathematical Methods in Engineering: An Introduction to the Mathematical Treatment of Engineering Problems. New York: McGraw-Hill, pp. 14-20, 1940.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, p. 741, 1992.Whittaker, E. T. and Robinson, G. "The Numerical Solution of Differential Equations." Ch. 14 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 363-367, 1967.在 Wolfram|Alpha 中引用
亚当斯方法
请引用为
Eric Weisstein “亚当斯方法。” 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/AdamsMethod.html
学科分类