偏微分方程 (PDE) 是一个涉及函数及其偏导数的方程;例如,波动方程
 |
(1)
|
一些偏微分方程可以在 Wolfram 语言 中使用以下命令精确求解DSolve[eqn, y,
x1, x2
],以及使用以下命令进行数值求解NDSolve[eqns, y,
x, xmin, xmax
,
t, tmin, tmax
]。
一般来说,偏微分方程比常微分方程更难解析求解。有时可以使用 Bäcklund 变换、特征线法、格林函数、积分变换、Lax 对、分离变量法,或者——当所有其他方法都失败时(这种情况经常发生)——数值方法,例如有限差分法来求解。
幸运的是,二阶偏微分方程通常可以使用解析解法。这类 PDE 的形式为
 |
(2)
|
然后根据矩阵的性质对线性二阶 PDE 进行分类
![Z=[A B; B C]](/images/equations/PartialDifferentialEquation/NumberedEquation3.svg) |
(3)
|
分为椭圆型、双曲型或抛物型。
如果
是一个正定矩阵,即
,则称该 PDE 为椭圆型。拉普拉斯方程和泊松方程是例子。边界条件用于给出约束
在
上,其中
 |
(4)
|
在
中成立。
如果 det
,则称该 PDE 为双曲型。波动方程是双曲型偏微分方程的一个例子。初边值条件用于给出
 |
(5)
|
 |
(6)
|
 |
(7)
|
其中
 |
(8)
|
在
中成立。
如果 det
,则称该 PDE 为抛物型。热传导方程和其他扩散方程是例子。初边值条件用于给出
 |
(9)
|
 |
(10)
|
其中
 |
(11)
|
在
中成立。
以下是数学物理问题中常见的重要的偏微分方程示例。
Benjamin-Bona-Mahony 方程
 |
(12)
|
双调和方程
 |
(13)
|
Boussinesq 方程
 |
(14)
|
Cauchy-Riemann 方程
Chaplygin 方程
 |
(17)
|
Euler-Darboux 方程
 |
(18)
|
热传导方程
 |
(19)
|
Helmholtz 微分方程
 |
(20)
|
Klein-Gordon 方程
 |
(21)
|
Korteweg-de Vries-Burgers 方程
 |
(22)
|
Korteweg-de Vries 方程
 |
(23)
|
Krichever-Novikov 方程
 |
(24)
|
其中
 |
(25)
|
拉普拉斯方程
 |
(26)
|
Lin-Tsien 方程
 |
(27)
|
Sine-Gordon 方程
 |
(28)
|
球谐微分方程
![[1/(sintheta)partial/(partialtheta)(sinthetapartial/(partialtheta))+1/(sin^2theta)(partial^2)/(partialphi^2)+l(l+1)]u=0.](/images/equations/PartialDifferentialEquation/NumberedEquation27.svg) |
(29)
|
Tricomi 方程
 |
(30)
|
波动方程
 |
(31)
|
另请参阅
Bäcklund 变换,
边界条件,
特征线法,
椭圆型偏微分方程,
格林函数,
双曲型偏微分方程,
积分变换,
Johnson 方程,
Lax 对,
Monge-Ampère 微分方程,
抛物型偏微分方程,
分离变量法 在 课堂中探索此主题
使用 探索
参考文献
Arfken, G. "Partial Differential Equations of Theoretical Physics." §8.1 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 437-440, 1985.Bateman, H. Partial Differential Equations of Mathematical Physics. New York: Dover, 1944.Conte, R. "Exact Solutions of Nonlinear Partial Differential Equations by Singularity Analysis." 13 Sep 2000. http://arxiv.org/abs/nlin.SI/0009024.Kamke, E. Differentialgleichungen Lösungsmethoden und Lösungen, Bd. 2: Partielle Differentialgleichungen ester Ordnung für eine gesuchte Function. New York: Chelsea, 1974.Folland, G. B. Introduction to Partial Differential Equations, 2nd ed. Princeton, NJ: Princeton University Press, 1996.Kevorkian, J. Partial Differential Equations: Analytical Solution Techniques, 2nd ed. New York: Springer-Verlag, 2000.Morse, P. M. and Feshbach, H. "Standard Forms for Some of the Partial Differential Equations of Theoretical Physics." Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 271-272, 1953.Polyanin, A.; Zaitsev, V.; and Moussiaux, A. Handbook of First-Order Partial Differential Equations. New York: Gordon and Breach, 2001.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Partial Differential Equations." Ch. 19 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 818-880, 1992.Sobolev, S. L. Partial Differential Equations of Mathematical Physics. New York: Dover, 1989.Sommerfeld, A. Partial Differential Equations in Physics. New York: Academic Press, 1964.Taylor, M. E. Partial Differential Equations, Vol. 1: Basic Theory. New York: Springer-Verlag, 1996.Taylor, M. E. Partial Differential Equations, Vol. 2: Qualitative Studies of Linear Equations. New York: Springer-Verlag, 1996.Taylor, M. E. Partial Differential Equations, Vol. 3: Nonlinear Equations. New York: Springer-Verlag, 1996.Trott, M. "The Mathematica Guidebooks Additional Material: Various Time-Dependent PDEs." http://www.mathematicaguidebooks.org/additions.shtml#N_1_06.Webster, A. G. Partial Differential Equations of Mathematical Physics, 2nd corr. ed. New York: Dover, 1955.Weisstein, E. W. "Books about Partial Differential Equations." http://www.ericweisstein.com/encyclopedias/books/PartialDifferentialEquations.html.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, 1997.在 中被引用
偏微分方程
请引用为
Weisstein, Eric W. "Partial Differential Equation." 来自 Web 资源. https://mathworld.net.cn/PartialDifferentialEquation.html
主题分类