主题
Search

Pi


CirclePi

常数 pi,用 pi 表示,是一个 实数,定义为 周长 C 与其 直径 d=2r 的比率,

pi=C/d
(1)
=C/(2r)
(2)

pi 的十进制展开式为

 pi=3.141592653589793238462643383279502884197...
(3)

(OEIS A000796)。Pi 的数字 有许多有趣的性质,尽管对其解析性质知之甚少。然而,spigot 算法(Rabinowitz 和 Wagon 1995;Arndt 和 Haenel 2001;Borwein 和 Bailey 2003,第 140-141 页)和 数字提取算法BBP 公式)是 pi 已知的。

Castellanos (1988ab) 简要介绍了 pi 的 符号 历史。pi 有时被称为阿基米德常数或鲁道夫常数,以纪念荷兰 pi 计算器鲁道夫·范·科伊伦 (Ludolph van Ceulen) (1539-1610)。符号 pi 最早由威尔士数学家威廉·琼斯 (William Jones) 于 1706 年使用,随后被欧拉采用。在《圆的测量》中,阿基米德(公元前 225 年左右)通过在 内接外切 6·2^n-边形,使用 阿基米德算法,获得了第一个严格的近似值。使用 n=4(96 边形),阿基米德得到

 3+(10)/(71)<pi<3+1/7
(4)

(Wells 1986,第 49 页;Shanks 1993,第 140 页;Borwein等人 2004,第 1-3 页)。

已知 pi无理数 (Lambert 1761; Legendre 1794; Hermite 1873; Nagell 1951; Niven 1956; Struik 1969; Königsberger 1990; Schröder 1993; Stevens 1999; Borwein 和 Bailey 2003, pp. 139-140)。1794 年,Legendre 也证明了 pi^2无理数 (Wells 1986, p. 76)。pi 也是 超越数 (Lindemann 1882)。Lindemann 对 pi 超越性的证明的直接结果也证明了被称为 化圆为方古代几何问题 是不可能的。Klein (1955) 给出了 Lindemann 证明的简化但仍然困难的版本。

还已知 pi 不是 刘维尔数 (Mahler 1953),但尚不清楚 pi 是否对任何基数都是正规的 (Stoneham 1970)。下表总结了计算 pi无理测度 的上限的进展。指数很可能可以减少到 2+epsilon,其中 epsilon 是一个无穷小的数 (Borwein et al. 1989)。

上限参考文献
20Mahler (1953), Le Lionnais (1983, p. 50)
14.65Chudnovsky 和 Chudnovsky (1984)
8.0161畑 (Hata) (1992)
7.606308Salikhov (2008)
7.10320534Zeilberger 和 Zudilin (2020)

尚不清楚 pi+epi/elnpi 是否为 无理数。然而,已知它们不能满足任何次数 <=8多项式 方程,其中 系数 是平均大小为 10^9整数 (Bailey 1988ab, Borwein et al. 1989)。

J. H. Conway 已经证明,存在一个少于 40 个 分数 F_1F_2、... 的序列,其特性是,如果您从 2^n 开始,并重复乘以第一个 F_i,直到得到整数结果,直到出现 2 的 (例如 2^k),则 kpi 的第 n 位十进制数字。

pi 除了 球体 之外,还在数学中各种意想不到的地方出现。例如,它出现在 正态分布 的归一化中,素数 的分布中,构造非常接近 整数 的数字(拉马努金常数),以及针掉落在 平行 线集上 相交 一条线的概率(蒲丰投针问题)。Pi 也出现在蜿蜒河流中源头和河口之间实际长度与直线距离的平均比率中 (Stølum 1996, Singh 1997)。

《圣经》包含两处参考文献(列王纪上 7:23 和历代志下 4:2),其中 pi 的值为 3 (Wells 1986, p. 48)。但是,应该提到的是,这两个例子都指的是从物理测量中获得的值,因此,可能完全在实验不确定性的范围内。《列王纪上》7:23 记载:“他铸一个铜海,样式是圆的,高五肘,直径十肘,围三十肘。” 这意味着 pi=C/d=30/10=3。巴比伦人给出的 pi 估计值为 3+1/8=3.125,而埃及人在莱因德纸草书中给出的 2^8/3^4=3.1605...,在其他地方则为 22/7。然而,中国几何学家做得最好,严格推导出 pi 到小数点后 6 位。

pi 出现在阿尔弗雷德·希区柯克执导的平淡乏味且演技拙劣的 1966 年电影《冲破铁幕》中,包括一个特别奇怪但令人难忘的场景,保罗·纽曼(饰演迈克尔·阿姆斯特朗教授)在农舍门口用脚在泥土中画了一个 pi 符号。在这部电影中,符号 pi 是一个东德地下网络的通行标志,该网络将逃亡者偷运到西方。

1998 年的电影π 是一部黑暗、怪异且节奏极快的电影,讲述了一位数学家在寻找股市模式时逐渐精神错乱的故事。一个哈西德教神秘教派和一个华尔街公司都了解了他的调查,并试图引诱他。不幸的是,这部电影基本上与真实的数学无关。314159,pi 的前六位数字是卡尔·萨根的小说接触中艾莉办公室保险箱的密码。

2005 年 9 月 15 日,谷歌发行了 14159265 股 A 类股票,这与小数点后 pi 的前八位数字相同 (Markoff 2005)。

圆柱体 体积公式引出了一个数学笑话:“一个厚度为 a,半径为 z 的披萨的体积是多少?” 答案:pi z z a。这个结果有时被称为第二个 披萨定理

2005 年专辑 Aerial 收录了一首名为“Pi”的歌曲,其中 pi 的前几位数字与歌词交错(不幸的是不正确)。

关于 pi 的 公式 非常多,从简单的到非常复杂的都有。

拉马努金 (Ramanujan) (1913-1914) 和 Olds (1963) 给出了 355/113 的几何构造。Gardner (1966, pp. 92-93) 给出了 3+16/113=3.1415929... 的几何构造。Dixon (1991) 给出了 6/5(1+phi)=3.141640...sqrt(4+[3-tan(30 degrees)]^2)=3.141533... 的构造。pi 近似值的构造是 化圆为方 的近似值(这本身是不可能的)。


另请参阅

几乎是整数, 阿基米德算法, BBP 公式, Brent-Salamin 公式, 布丰-拉普拉斯投针问题, 蒲丰投针问题, , 周长, 直径, 狄利克雷 Beta 函数, 狄利克雷 Eta 函数, 狄利克雷 Lambda 函数, e, 欧拉-马歇罗尼常数, 麦克劳林级数, 马青公式, 类马青公式, 正态分布, Pi 近似值, Pi 连分数, Pi 数字, Pi 公式, Pi 文字游戏, 半径, 互质, 黎曼 Zeta 函数, 球体, 三角学 在 MathWorld 课堂中探索此主题

相关的 Wolfram 站点

http://functions.wolfram.com/Constants/Pi/

使用 Wolfram|Alpha 探索

参考文献

Almkvist, G. and Berndt, B. "Gauss, Landen, Ramanujan, and Arithmetic-Geometric Mean, Ellipses, pi, and the Ladies Diary." Amer. Math. Monthly 95, 585-608, 1988.Almkvist, G. "Many Correct Digits of pi, Revisited." Amer. Math. Monthly 104, 351-353, 1997.Arndt, J. "Cryptic Pi Related Formulas." http://www.jjj.de/hfloat/pise.dvi.Arndt, J. and Haenel, C. Pi: Algorithmen, Computer, Arithmetik. Berlin: Springer-Verlag, 1998.Arndt, J. and Haenel, C. Pi--Unleashed, 2nd ed. Berlin: Springer-Verlag, 2001.Assmus, E. F. "Pi." Amer. Math. Monthly 92, 213-214, 1985.Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving pi, e, and Euler's Constant." Math. Comput. 50, 275-281, 1988a.Bailey, D. H. "The Computation of pi to 29360000 Decimal Digit using Borwein's' Quartically Convergent Algorithm." Math. Comput. 50, 283-296, 1988b.Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913, 1997.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 55 and 274, 1987. Beck, G. and Trott, M. "Calculating Pi from Antiquity to Modern Times." http://library.wolfram.com/infocenter/Demos/107/.Beckmann, P. A History of Pi, 3rd ed. New York: Dorset Press, 1989.Beeler, M. et al. Item 140 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 69, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/pi.html#item140.Berggren, L.; Borwein, J.; and Borwein, P. Pi: A Source Book. New York: Springer-Verlag, 1997.Bellard, F. "Fabrice Bellard's Pi Page." http://www-stud.enst.fr/~bellard/pi/.Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.Blatner, D. The Joy of Pi. New York: Walker, 1997.Blatner, D. "The Joy of Pi." http://www.joyofpi.com/.Borwein, J. M. "Ramanujan Type Series." http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/omlink9/html/node1.html.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987a.Borwein, J. M. and Borwein, P. B. "Ramanujan's Rational and Algebraic Series for 1/pi." Indian J. Math. 51, 147-160, 1987b.Borwein, J. M. and Borwein, P. B. "More Ramanujan-Type Series for 1/pi." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). New York: Academic Press, pp. 359-374, 1988.Borwein, J. M. and Borwein, P. B. "Class Number Three Ramanujan Type Series for 1/pi." J. Comput. Appl. Math. 46, 281-290, 1993.Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. "Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute One Billion Digits of Pi." Amer. Math. Monthly 96, 201-219, 1989.Borwein, P. B. "Pi and Other Constants." http://www.cecm.sfu.ca/~pborwein/PISTUFF/Apistuff.html.Calvet, C. "First Communication. A) Secrets of Pi: Strange Things in a Mathematical Train." http://www.terravista.pt/guincho/1219/1a_index_uk.html.Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988a.Castellanos, D. "The Ubiquitous Pi. Part II." Math. Mag. 61, 148-163, 1988b.Chan, J. "As Easy as Pi." Math Horizons, pp. 18-19, Winter 1993.Choong, K. Y.; Daykin, D. E.; and Rathbone, C. R. "Rational Approximations to pi." Math. Comput. 25, 387-392, 1971.Chudnovsky, D. V. and Chudnovsky, G. V. Padé and Rational Approximations to Systems of Functions and Their Arithmetic Applications. Berlin: Springer-Verlag, 1984.Chudnovsky, D. V. and Chudnovsky, G. V. "Approximations and Complex Multiplication According to Ramanujan." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). Boston, MA: Academic Press, pp. 375-472, 1987.Conway, J. H. and Guy, R. K. "The Number pi." In The Book of Numbers. New York: Springer-Verlag, pp. 237-239, 1996.David, Y. "On a Sequence Generated by a Sieving Process." Riveon Lematematika 11, 26-31, 1957.Dixon, R. "The Story of Pi (pi)." §4.3 in Mathographics. New York: Dover, pp. 44-49 and 98-101, 1991.Dunham, W. "A Gem from Isaac Newton." Ch. 7 in Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, pp. 106-112 and 155-183, 1990.Exploratorium. "pi Page." http://www.exploratorium.edu/learning_studio/pi/.Finch, S. R. "Archimedes' Constant." §1.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 17-28, 2003.Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.Gardner, M. "Memorizing Numbers." Ch. 11 in The Scientific American Book of Mathematical Puzzles and Diversions. New York: Simon and Schuster, p. 103, 1959.Gardner, M. "The Transcendental Number Pi." Ch. 8 in Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, pp. 91-102, 1966.Gosper, R. W. Table of Simple Continued Fraction for pi and the Derived Decimal Approximation. Stanford, CA: Artificial Intelligence Laboratory, Stanford University, Oct. 1975. Reviewed in Math. Comput. 31, 1044, 1977.Gourdon, X. and Sebah, P. "The Constant pi." http://numbers.computation.free.fr/Constants/Pi/pi.html.Hardy, G. H. A Course of Pure Mathematics, 10th ed. Cambridge, England: Cambridge University Press, 1952.Hata, M. "Improvement in the Irrationality Measures of pi and pi^2." Proc. Japan. Acad. Ser. A Math. Sci. 68, 283-286, 1992.Havermann, H. "180000000 Terms of the Continued Fraction Expansion of Pi." http://odo.ca/~haha/j/seq/cfpi/.Hermite, C. "Sur quelques approximations algébriques." J. reine angew. Math. 76, 342-344, 1873. Reprinted in Oeuvres complètes, Tome III. Paris: Hermann, pp. 146-149, 1912.Hobson, E. W. Squaring the Circle. New York: Chelsea, 1988.Klein, F. Famous Problems. New York: Chelsea, 1955.Knopp, K. §32, 136, and 138 in Theory and Application of Infinite Series. New York: Dover, p. 238, 1990.Königsberger, K. Analysis 1. Berlin: Springer-Verlag, 1990.Laczkovich, M. "On Lambert's Proof of the Irrationality of pi." Amer. Math. Monthly 104, 439-443, 1997.Lambert, J. H. "Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques." Mémoires de l'Academie des sciences de Berlin 17, 265-322, 1761.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 22 and 50, 1983.Legendre, A. M. Eléments de géométrie. Paris, France: Didot, 1794.Lindemann, F. "Über die Zahl pi." Math. Ann. 20, 213-225, 1882.Lopez, A. "Indiana Bill Sets the Value of pi to 3." http://db.uwaterloo.ca/~alopez-o/math-faq/node45.html.MacTutor Archive. "Pi Through the Ages." http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Pi_through_the_ages.html.Mahler, K. "On the Approximation of pi." Nederl. Akad. Wetensch. Proc. Ser. A. 56/Indagationes Math. 15, 30-42, 1953.Markoff, J. "14,159,265 New Slices of Rich Technology." The New York Times. Aug. 19, 2005.MathPages. "Rounding Up to Pi." http://www.mathpages.com/home/kmath001.htm.Nagell, T. "Irrationality of the numbers e and pi." §13 in Introduction to Number Theory. New York: Wiley, pp. 38-40, 1951.Niven, I. "A Simple Proof that pi is Irrational." Bull. Amer. Math. Soc. 53, 509, 1947.Niven, I. M. Irrational Numbers. New York: Wiley, 1956.Ogilvy, C. S. "Pi and Pi-Makers." Ch. 10 in Excursions in Mathematics. New York: Dover, pp. 108-120, 1994.Olds, C. D. Continued Fractions. New York: Random House, pp. 59-60, 1963.Pappas, T. "Probability and pi." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 18-19, 1989.Peterson, I. Islands of Truth: A Mathematical Mystery Cruise. New York: W. H. Freeman, pp. 178-186, 1990.Pickover, C. A. Keys to Infinity. New York: Wiley, p. 62, 1995.Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.Update a linkPlouffe, S. "1 Billion Digits of Pi." http://pi.lacim.uqam.ca/eng/Plouffe, S. "A Few Approximations of Pi." http://pi.lacim.uqam.ca/eng/approximations_en.html.Plouffe, S. "PiHex: A Distributed Effort to Calculate Pi." http://www.cecm.sfu.ca/projects/pihex/.Plouffe, S. "The pi Page." http://www.cecm.sfu.ca/pi/.Plouffe, S. "Table of Computation of Pi from 2000 BC to Now." http://oldweb.cecm.sfu.ca/projects/ISC/Pihistory.html.Preston, R. "Mountains of Pi." New Yorker 68, 36-67, Mar. 2, 1992. http://www.lacim.uqam.ca/~plouffe/Chudnovsky.html.Project Mathematics. "The Story of Pi." Videotape. http://www.projectmathematics.com/storypi.htm.Rabinowitz, S. and Wagon, S. "A Spigot Algorithm for the Digits of pi." Amer. Math. Monthly 102, 195-203, 1995.Ramanujan, S. "Modular Equations and Approximations to pi." Quart. J. Pure. Appl. Math. 45, 350-372, 1913-1914.Rivera, C. "Problems & Puzzles: Puzzle 050-The Best Approximation to Pi with Primes." http://www.primepuzzles.net/puzzles/puzz_050.htm.Rudio, F. "Archimedes, Huygens, Lambert, Legendre." In Vier Abhandlungen über die Kreismessung. Leipzig, Germany, 1892.Sagan, C. Contact. Pocket Books, 1997.Salikhov, V. Kh. "On the Irrationality Measure of pi." Usp. Mat. Nauk 63, 163-164, 2008. English transl. in Russ. Math. Surv 63, 570-572, 2008.Schröder, E. M. "Zur Irrationalität von pi^2 und pi." Mitt. Math. Ges. Hamburg 13, 249, 1993.Shanks, D. "Dihedral Quartic Approximations and Series for pi." J. Number. Th. 14, 397-423, 1982.Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993.Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, pp. 17-18, 1997.Sloane, N. J. A. Sequences A000796/M2218, A001203/M2646, A001901, A002485/M3097, A002486/M4456, A006784, A007509/M2061, A025547, A032510, A032523 A033089, A033090, A036903, and A046126 in in "The On-Line Encyclopedia of Integer Sequences."Smith, D. E. "The History and Transcendence of pi." Ch. 9 in Monographs on Topics of Modern Mathematics Relevant to the Elementary Field (Ed. J. W. A. Young). New York: Dover, pp. 388-416, 1955.Stevens, J. "Zur Irrationalität von pi." Mitt. Math. Ges. Hamburg 18, 151-158, 1999.Stølum, H.-H. "River Meandering as a Self-Organization Process." Science 271, 1710-1713, 1996.Stoneham, R. "A General Arithmetic Construction of Transcendental Non-Liouville Normal Numbers from Rational Functions." Acta Arith. 16, 239-253, 1970.Stoschek, E. "Modul 33: Algames with Numbers" http://marvin.sn.schule.de/~inftreff/modul33/task33.htm.Struik, D. A Source Book in Mathematics, 1200-1800. Cambridge, MA: Harvard University Press, 1969.Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 159, 1991.Viète, F. Uriorum de rebus mathematicis responsorum, liber VIII, 1593.Wagon, S. "Is pi Normal?" Math. Intel. 7, 65-67, 1985.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 48-55 and 76, 1986.Whitcomb, C. "Notes on Pi (pi)." http://witcombe.sbc.edu/earthmysteries/EMPi.html.Woon, S. C. "Problem 1441." Math. Mag. 68, 72-73, 1995.Zeilberger, D. and Zudilin, W. "The Irrationality Measure of pi is at Most 7.103205334137...." 8 Jan 2020. https://arxiv.org/abs/1912.06345.

在 Wolfram|Alpha 上被引用

Pi

请这样引用

Weisstein, Eric W. "Pi." 出自 MathWorld-- Wolfram Web 资源。 https://mathworld.net.cn/Pi.html

主题分类