另请参阅
几乎是整数,
阿基米德算法,
BBP 公式,
Brent-Salamin 公式,
布丰-拉普拉斯投针问题,
蒲丰投针问题,
圆,
周长,
直径,
狄利克雷 Beta 函数,
狄利克雷 Eta 函数,
狄利克雷 Lambda 函数,
e,
欧拉-马歇罗尼常数,
麦克劳林级数,
马青公式,
类马青公式,
正态分布,
Pi 近似值,
Pi 连分数,
Pi 数字,
Pi 公式,
Pi 文字游戏,
半径,
互质,
黎曼 Zeta 函数,
球体,
三角学 在 MathWorld 课堂中探索此主题
相关的 Wolfram 站点
http://functions.wolfram.com/Constants/Pi/
使用 Wolfram|Alpha 探索
参考文献
Almkvist, G. and Berndt, B. "Gauss, Landen, Ramanujan, and Arithmetic-Geometric Mean, Ellipses,
, and the Ladies Diary." Amer. Math. Monthly 95, 585-608, 1988.Almkvist, G. "Many Correct Digits of
, Revisited." Amer. Math. Monthly 104, 351-353, 1997.Arndt, J. "Cryptic Pi Related Formulas." http://www.jjj.de/hfloat/pise.dvi.Arndt, J. and Haenel, C. Pi: Algorithmen, Computer, Arithmetik. Berlin: Springer-Verlag, 1998.Arndt, J. and Haenel, C. Pi--Unleashed, 2nd ed. Berlin: Springer-Verlag, 2001.Assmus, E. F. "Pi." Amer. Math. Monthly 92, 213-214, 1985.Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving
,
, and Euler's Constant." Math. Comput. 50, 275-281, 1988a.Bailey, D. H. "The Computation of
to
Decimal Digit using Borwein's' Quartically Convergent Algorithm." Math. Comput. 50, 283-296, 1988b.Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913, 1997.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 55 and 274, 1987.
Beck, G. and Trott, M. "Calculating Pi from Antiquity to Modern Times." http://library.wolfram.com/infocenter/Demos/107/.Beckmann, P. A History of Pi, 3rd ed. New York: Dorset Press, 1989.Beeler, M. et al. Item 140 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 69, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/pi.html#item140.Berggren, L.; Borwein, J.; and Borwein, P. Pi: A Source Book. New York: Springer-Verlag, 1997.Bellard, F. "Fabrice Bellard's Pi Page." http://www-stud.enst.fr/~bellard/pi/.Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.Blatner, D. The Joy of Pi. New York: Walker, 1997.Blatner, D. "The Joy of Pi." http://www.joyofpi.com/.Borwein, J. M. "Ramanujan Type Series." http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/omlink9/html/node1.html.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987a.Borwein, J. M. and Borwein, P. B. "Ramanujan's Rational and Algebraic Series for
." Indian J. Math. 51, 147-160, 1987b.Borwein, J. M. and Borwein, P. B. "More Ramanujan-Type Series for
." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). New York: Academic Press, pp. 359-374, 1988.Borwein, J. M. and Borwein, P. B. "Class Number Three Ramanujan Type Series for
." J. Comput. Appl. Math. 46, 281-290, 1993.Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. "Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute One Billion Digits of Pi." Amer. Math. Monthly 96, 201-219, 1989.Borwein, P. B. "Pi and Other Constants." http://www.cecm.sfu.ca/~pborwein/PISTUFF/Apistuff.html.Calvet, C. "First Communication. A) Secrets of Pi: Strange Things in a Mathematical Train." http://www.terravista.pt/guincho/1219/1a_index_uk.html.Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988a.Castellanos, D. "The Ubiquitous Pi. Part II." Math. Mag. 61, 148-163, 1988b.Chan, J. "As Easy as Pi." Math Horizons, pp. 18-19, Winter 1993.Choong, K. Y.; Daykin, D. E.; and Rathbone, C. R. "Rational Approximations to
." Math. Comput. 25, 387-392, 1971.Chudnovsky, D. V. and Chudnovsky, G. V. Padé and Rational Approximations to Systems of Functions and Their Arithmetic Applications. Berlin: Springer-Verlag, 1984.Chudnovsky, D. V. and Chudnovsky, G. V. "Approximations and Complex Multiplication According to Ramanujan." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). Boston, MA: Academic Press, pp. 375-472, 1987.Conway, J. H. and Guy, R. K. "The Number
." In The Book of Numbers. New York: Springer-Verlag, pp. 237-239, 1996.David, Y. "On a Sequence Generated by a Sieving Process." Riveon Lematematika 11, 26-31, 1957.Dixon, R. "The Story of Pi (
)." §4.3 in Mathographics. New York: Dover, pp. 44-49 and 98-101, 1991.Dunham, W. "A Gem from Isaac Newton." Ch. 7 in Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, pp. 106-112 and 155-183, 1990.Exploratorium. "
Page." http://www.exploratorium.edu/learning_studio/pi/.Finch, S. R. "Archimedes' Constant." §1.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 17-28, 2003.Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.Gardner, M. "Memorizing Numbers." Ch. 11 in The Scientific American Book of Mathematical Puzzles and Diversions. New York: Simon and Schuster, p. 103, 1959.Gardner, M. "The Transcendental Number Pi." Ch. 8 in Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, pp. 91-102, 1966.Gosper, R. W. Table of Simple Continued Fraction for
and the Derived Decimal Approximation. Stanford, CA: Artificial Intelligence Laboratory, Stanford University, Oct. 1975. Reviewed in Math. Comput. 31, 1044, 1977.Gourdon, X. and Sebah, P. "The Constant
." http://numbers.computation.free.fr/Constants/Pi/pi.html.Hardy, G. H. A Course of Pure Mathematics, 10th ed. Cambridge, England: Cambridge University Press, 1952.Hata, M. "Improvement in the Irrationality Measures of
and
." Proc. Japan. Acad. Ser. A Math. Sci. 68, 283-286, 1992.Havermann, H. "
Terms of the Continued Fraction Expansion of Pi." http://odo.ca/~haha/j/seq/cfpi/.Hermite, C. "Sur quelques approximations algébriques." J. reine angew. Math. 76, 342-344, 1873. Reprinted in Oeuvres complètes, Tome III. Paris: Hermann, pp. 146-149, 1912.Hobson, E. W. Squaring the Circle. New York: Chelsea, 1988.Klein, F. Famous Problems. New York: Chelsea, 1955.Knopp, K. §32, 136, and 138 in Theory and Application of Infinite Series. New York: Dover, p. 238, 1990.Königsberger, K. Analysis 1. Berlin: Springer-Verlag, 1990.Laczkovich, M. "On Lambert's Proof of the Irrationality of
." Amer. Math. Monthly 104, 439-443, 1997.Lambert, J. H. "Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques." Mémoires de l'Academie des sciences de Berlin 17, 265-322, 1761.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 22 and 50, 1983.Legendre, A. M. Eléments de géométrie. Paris, France: Didot, 1794.Lindemann, F. "Über die Zahl
." Math. Ann. 20, 213-225, 1882.Lopez, A. "Indiana Bill Sets the Value of
to 3." http://db.uwaterloo.ca/~alopez-o/math-faq/node45.html.MacTutor Archive. "Pi Through the Ages." http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Pi_through_the_ages.html.Mahler, K. "On the Approximation of
." Nederl. Akad. Wetensch. Proc. Ser. A. 56/Indagationes Math. 15, 30-42, 1953.Markoff, J. "14,159,265 New Slices of Rich Technology." The New York Times. Aug. 19, 2005.MathPages. "Rounding Up to Pi." http://www.mathpages.com/home/kmath001.htm.Nagell, T. "Irrationality of the numbers
and
." §13 in Introduction to Number Theory. New York: Wiley, pp. 38-40, 1951.Niven, I. "A Simple Proof that
is Irrational." Bull. Amer. Math. Soc. 53, 509, 1947.Niven, I. M. Irrational Numbers. New York: Wiley, 1956.Ogilvy, C. S. "Pi and Pi-Makers." Ch. 10 in Excursions in Mathematics. New York: Dover, pp. 108-120, 1994.Olds, C. D. Continued Fractions. New York: Random House, pp. 59-60, 1963.Pappas, T. "Probability and
." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 18-19, 1989.Peterson, I. Islands of Truth: A Mathematical Mystery Cruise. New York: W. H. Freeman, pp. 178-186, 1990.Pickover, C. A. Keys to Infinity. New York: Wiley, p. 62, 1995.Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.
Plouffe, S. "1 Billion Digits of Pi." http://pi.lacim.uqam.ca/eng/Plouffe, S. "A Few Approximations of Pi." http://pi.lacim.uqam.ca/eng/approximations_en.html.Plouffe, S. "PiHex: A Distributed Effort to Calculate Pi." http://www.cecm.sfu.ca/projects/pihex/.Plouffe, S. "The
Page." http://www.cecm.sfu.ca/pi/.Plouffe, S. "Table of Computation of Pi from 2000 BC to Now." http://oldweb.cecm.sfu.ca/projects/ISC/Pihistory.html.Preston, R. "Mountains of Pi." New Yorker 68, 36-67, Mar. 2, 1992. http://www.lacim.uqam.ca/~plouffe/Chudnovsky.html.Project Mathematics. "The Story of Pi." Videotape. http://www.projectmathematics.com/storypi.htm.Rabinowitz, S. and Wagon, S. "A Spigot Algorithm for the Digits of
." Amer. Math. Monthly 102, 195-203, 1995.Ramanujan, S. "Modular Equations and Approximations to
." Quart. J. Pure. Appl. Math. 45, 350-372, 1913-1914.Rivera, C. "Problems & Puzzles: Puzzle 050-The Best Approximation to Pi with Primes." http://www.primepuzzles.net/puzzles/puzz_050.htm.Rudio, F. "Archimedes, Huygens, Lambert, Legendre." In Vier Abhandlungen über die Kreismessung. Leipzig, Germany, 1892.Sagan, C. Contact. Pocket Books, 1997.Salikhov, V. Kh. "On the Irrationality Measure of
." Usp. Mat. Nauk 63, 163-164, 2008. English transl. in Russ. Math. Surv 63, 570-572, 2008.Schröder, E. M. "Zur Irrationalität von
und
." Mitt. Math. Ges. Hamburg 13, 249, 1993.Shanks, D. "Dihedral Quartic Approximations and Series for
." J. Number. Th. 14, 397-423, 1982.Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993.Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, pp. 17-18, 1997.Sloane, N. J. A. Sequences A000796/M2218, A001203/M2646, A001901, A002485/M3097, A002486/M4456, A006784, A007509/M2061, A025547, A032510, A032523 A033089, A033090, A036903, and A046126 in in "The On-Line Encyclopedia of Integer Sequences."Smith, D. E. "The History and Transcendence of
." Ch. 9 in Monographs on Topics of Modern Mathematics Relevant to the Elementary Field (Ed. J. W. A. Young). New York: Dover, pp. 388-416, 1955.Stevens, J. "Zur Irrationalität von
." Mitt. Math. Ges. Hamburg 18, 151-158, 1999.Stølum, H.-H. "River Meandering as a Self-Organization Process." Science 271, 1710-1713, 1996.Stoneham, R. "A General Arithmetic Construction of Transcendental Non-Liouville Normal Numbers from Rational Functions." Acta Arith. 16, 239-253, 1970.Stoschek, E. "Modul 33: Algames with Numbers" http://marvin.sn.schule.de/~inftreff/modul33/task33.htm.Struik, D. A Source Book in Mathematics, 1200-1800. Cambridge, MA: Harvard University Press, 1969.Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 159, 1991.Viète, F. Uriorum de rebus mathematicis responsorum, liber VIII, 1593.Wagon, S. "Is
Normal?" Math. Intel. 7, 65-67, 1985.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 48-55 and 76, 1986.Whitcomb, C. "Notes on Pi (
)." http://witcombe.sbc.edu/earthmysteries/EMPi.html.Woon, S. C. "Problem 1441." Math. Mag. 68, 72-73, 1995.Zeilberger, D. and Zudilin, W. "The Irrationality Measure of
is at Most 7.103205334137...." 8 Jan 2020. https://arxiv.org/abs/1912.06345.在 Wolfram|Alpha 上被引用
Pi
请这样引用
Weisstein, Eric W. "Pi." 出自 MathWorld-- Wolfram Web 资源。 https://mathworld.net.cn/Pi.html
主题分类