仅使用直尺和圆规构造一个面积等于圆的正方形。这是古代三大几何难题之一,可能最早由阿那克萨哥拉尝试。当林德曼在 1882 年证明 π 是超越数时,最终证明这是一个不可能的问题。
然而,化圆为方的近似解是通过构造接近
的长度给出的。拉马努金 (1913-1914)、奥尔兹 (1963)、加德纳 (1966, pp. 92-93) 和 (Bold 1982, p. 45) 给出了
的几何作图。迪克森 (1991) 给出了
和
(科钦斯基近似) 的作图。
虽然在欧几里得空间中无法化圆为方,但在高斯-波利亚伊-罗巴切夫斯基空间中是可以的 (Gray 1989)。
另请参阅
巴拿赫-塔斯基悖论,
几何作图,
科钦斯基近似,
求积法,
平方,
华莱士-波利亚伊-格尔温定理
使用 Wolfram|Alpha 探索
参考文献
Bold, B. "The Problem of Squaring the Circle." 第 6 章,收录于 Famous Problems of Geometry and How to Solve Them.纽约: Dover, pp. 39-48, 1982.Conway, J. H. and Guy, R. K. The Book of Numbers. 纽约: Springer-Verlag, pp. 190-191, 1996.Dixon, R. Mathographics. 纽约: Dover, pp. 44-49 和 52-53, 1991.Dunham, W. "Hippocrates' Quadrature of the Lune." 第 1 章,收录于 Journey through Genius: The Great Theorems of Mathematics. 纽约: Wiley, pp. 20-26, 1990.Gardner, M. "The Transcendental Number Pi." 第 8 章,收录于 Martin Gardner's New Mathematical Diversions from Scientific American. 纽约: Simon and Schuster, pp. 91-102, 1966.Gray, J. Ideas of Space: Euclidean, Non-Euclidean, and Relativistic, 2nd ed. 牛津,英格兰: Oxford University Press, 1989.Hertel, E. "On the Set-Theoretical Circle-Squaring Problem." http://www.minet.uni-jena.de/Math-Net/reports/sources/2000/00-06report.ps.Jesseph, D. M. Squaring the Circle: The War Between Hobbes and Wallis. 芝加哥: University of Chicago Press, 1999.Klein, F. "Transcendental Numbers and the Quadrature of the Circle." 第二部分,收录于 "Famous Problems of Elementary Geometry: The Duplication of the Cube, the Trisection of the Angle, and the Quadrature of the Circle.",Famous Problems and Other Monographs. 纽约: Chelsea, pp. 49-80, 1980.Meyers, L. F. "Update on William Wernick's 'Triangle Constructions with Three Located Points.' " Math. Mag. 69, 46-49, 1996.Olds, C. D. Continued Fractions. 纽约: Random House, pp. 59-60, 1963.Ramanujan, S. "Modular Equations and Approximations to
." Quart. J. Pure. Appl. Math. 45, 350-372, 1913-1914.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. 米德尔塞克斯,英格兰: Penguin Books, p. 48, 1986.
请引用为
埃里克·W·韦斯坦因 "化圆为方。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/CircleSquaring.html
主题分类