主题
Search

踏瓣曲线


PedalCurve
Pedal curve animation

曲线 C 关于点 O 的踏瓣曲线是从 O 到曲线切线的垂足的轨迹。更准确地说,给定曲线 C,关于固定点 O(称为踏瓣点)的 C 的踏瓣曲线 P 是从 OC切线垂线的交点 P 的轨迹。相对于踏瓣点 (x_0,y_0),曲线 (f(t),g(t)) 的参数方程由下式给出

x_p=(x_0f^('2)+fg^('2)+(y_0-g)f^'g^')/(f^('2)+g^('2))
(1)
y_p=(y_0g^('2)+gf^('2)+(x_0-f)f^'g^')/(f^('2)+g^('2)).
(2)

如果曲线 P 是曲线 C 的踏瓣曲线,则 CP负踏瓣曲线 (Lawrence 1972, pp. 47-48)。

闭合曲线在直线上滚动时,曲线上任何一点完成一次完整旋转后,直线和滚轮线之间的面积是滚动曲线的踏瓣曲线(相对于生成点取得)面积的两倍。


参见

反踏瓣曲线, 负踏瓣曲线, 踏瓣点

使用 Wolfram|Alpha 探索

参考文献

Ameseder, A. "Ueber Fusspunktcurven der Kegelschnitte." Archiv Math. u. Phys. 64, 143-144, 1879.Ameseder, A. "Zur Theorie der Fusspunktencurven der Kegelschnitte." Archiv Math. u. Phys. 64, 145-163, 1879.Gray, A. "Pedal Curves." §5.8 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 117-125, 1997.Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, p. 25, 1999.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 46-49 and 204, 1972.Lockwood, E. H. "Pedal Curves." Ch. 18 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 152-155, 1967.Porteous, I. R. Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge, England: Cambridge University Press, 1994.Trott, M. The Mathematica GuideBook for Graphics. New York: Springer-Verlag, p. 19, 2004. http://www.mathematicaguidebooks.org/.Ueda, K. In Mathematical Methods for Curves and Surfaces (Ed. T. Lyche and L. L. Shumaker). Nashville, TN: Vanderbilt University Press, 2001.Yates, R. C. "Pedal Curves." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 160-165, 1952.Zwikker, C. The Advanced Geometry of Plane Curves and Their Applications. New York: Dover, pp. 150-158, 1963.

在 Wolfram|Alpha 中被引用

踏瓣曲线

请引用为

韦斯坦因,埃里克·W. "踏瓣曲线。" 来自 MathWorld--Wolfram 网络资源。 https://mathworld.net.cn/PedalCurve.html

主题分类