主题
Search

对数螺线


LogarithmicSpiral

对数螺线是一种螺线,其极坐标方程由下式给出

 r=ae^(btheta),
(1)

其中 r 是到原点的距离,theta 是从 x的角度,ab 是任意常数。对数螺线也称为生长螺线、等角螺线和奇异螺线。它可以参数化表示为

x=rcostheta=acosthetae^(btheta)
(2)
y=rsintheta=asinthetae^(btheta).
(3)

这种螺线斐波那契数黄金比例黄金矩形有关,有时也称为黄金螺线。

LogarithmicSpiralConst

对数螺线可以通过从等距射线构造,方法是从一条射线上的一个点开始,并绘制到相邻射线的垂线。随着射线数量趋于无穷大,线段序列逼近光滑的对数螺线(Hilton et al. 1997,第 2-3 页)。

对数螺线最早由笛卡尔于 1638 年和雅各布·伯努利研究。伯努利对螺线如此着迷,以至于他让人将螺线刻在他的墓碑上(尽管雕刻师没有将其绘制成真实形状),并附上文字“eadem mutata resurgo”(“我将以同样的方式复活,尽管已改变”)。托里切利独立研究了它,并找到了曲线的长度(MacTutor Archive)。

半径的变化率是

 (dr)/(dtheta)=abe^(btheta)=br,
(4)

并且在点 (r,theta) 处,切线和径向线之间的角度是

 psi=tan^(-1)(r/((dr)/(dtheta)))=tan^(-1)(1/b)=cot^(-1)b.
(5)

因此,当 b->0 时,psi->pi/2,螺线逼近一个

如果 P 是螺线上的任意点,则从 P 到原点的螺线长度是有限的。实际上,从点 P 沿半径向量测得距离原点为 r 的点 P,沿螺线从 P极点的距离恰好是弧长。此外,从原点出发的任何半径与螺线相交的距离都成等比数列(MacTutor Archive)。

对数螺线的弧长(从原点 t=-infty 测量)、曲率切线角由下式给出

s(theta)=(asqrt(1+b^2)e^(btheta))/b
(6)
kappa(theta)=(e^(-btheta))/(asqrt(1+b^2))
(7)
phi(theta)=theta.
(8)

则 Cesàro 方程由下式给出

 skappa=(1-akappasqrt(1+b^2))/b.
(9)

在球面上,类似物是斜航线


另请参阅

阿基米德螺线, 黄金矩形, 黄金螺线, 对数螺线反射包络线, 对数螺线渐屈线, 对数螺线反曲线, 对数螺线垂足曲线, 对数螺线径向曲线, 老鼠问题, 螺线, 拖网渔船问题, 涡卷

使用 Wolfram|Alpha 探索

参考文献

Archibald, R. C. "The Logarithmic Spiral." Amer. Math. Monthly 25, 189-193, 1918.BioMedNet. "Art Gallery: Spira Mirabilis." http://news.bmn.com/hmsbeagle/89/xcursion/artgalry/.Bourbaki, N. "The Most Mysterious Shape of All." Quantum, 32-35, March/April 1994.Boyadzhiev, K. N. "Spirals and Conchospirals in the Flight of Insects." Coll. Math. J. 30, 23-31, 1999.Cook, T. A. The Curves of Life, Being an Account of Spiral Formations and Their Application to Growth in Nature, To Science and to Art. New York: Dover, 1979.Gray, A. "Logarithmic Spirals." Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 40-42, 1997.Hilton, P.; Holton, D.; and Pedersen, J. Mathematical Reflections in a Room with Many Mirrors. New York: Springer-Verlag, 1997.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 184-186, 1972.Livio, M. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number. New York: Broadway Books, pp. 116-120, 2002.Lockwood, E. H. "The Equiangular Spiral." Ch. 11 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 98-109, 1967.MacTutor History of Mathematics Archive. "Equiangular Spiral." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Equiangular.html.Smith, D. E. History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, p. 329, 1958.Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 132-136, 1999.Thompson, D'Arcy W. Science and the Classics. Oxford, England: Oxford University Press, pp. 114-147, 1940.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 67-68, 1991.

请引用为

Weisstein, Eric W. “对数螺线。” 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/LogarithmicSpiral.html

主题分类