另请参阅 abc 猜想 ,
阿基米德牛群问题 ,
巴歇方程 ,
婆罗摩笈多问题 ,
炮弹问题 ,
卡塔兰猜想 ,
丢番图 ,
丢番图方程——2 次幂 丢番图方程——3 次幂 ,
丢番图方程——4 次幂 ,
丢番图方程——5 次幂 丢番图方程——6 次幂 ,
丢番图方程——7 次幂 ,
丢番图方程——8 次幂 ,
丢番图方程——9 次幂 ,
丢番图方程——10 次幂 ,
丢番图方程——n 次幂 ,
丢番图性质 ,
欧拉砖块 ,
欧拉四次猜想 ,
费马最后定理 ,
费马椭圆曲线定理 ,
亏格定理 ,
赫尔维茨方程 ,
马尔可夫数 ,
猴子与椰子问题 ,
多次方程组 ,
p -adic 数,
佩尔方程 ,
毕达哥拉斯四元组 ,
毕达哥拉斯三元组 ,
有理距离问题 ,
图厄方程 在 MathWorld 课堂中探索此主题
使用 Wolfram|Alpha 探索
参考文献 Alpern, D. "Sums of Powers." http://www.alpertron.com.ar/SUMPOWER.HTM . Bashmakova, I. G. Diophantus and Diophantine Equations. Washington, DC: Math. Assoc. Amer., 1997. Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966. Carmichael, R. D. The Theory of Numbers, and Diophantine Analysis. New York: Dover, 1959. Courant, R. and Robbins, H. "Continued Fractions. Diophantine Equations." §2.4 in Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 49-51, 1996. Davis, M. "Hilbert's Tenth Problem is Unsolvable." Amer. Math. Monthly 80 , 233-269, 1973. Davis, M. and Hersh, R. "Hilbert's 10th Problem." Sci. Amer. 229 , 84-91, Nov. 1973. Davis, M. "Hilbert's Tenth Problem is Unsolvable." Appendix 2 in Computability and Unsolvability. New York: Dover, 1999-235, 1982. Dickson, L. E. "Linear Diophantine Equations and Congruences." Ch. 2 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 41-99, 2005. dmoz. "Equal Sums of Like Powers." http://dmoz.org/Science/Math/Number_Theory/Diophantine_Equations/Equal_Sums_of_Like_Powers/ . Dörrie, H. "The Fermat-Gauss Impossibility Theorem." §21 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 96-104, 1965. Ekl, R. L. "New Results in Equal Sums of Like Powers." Math. Comput. 67 , 1309-1315, 1998. Guy, R. K. "Diophantine Equations." Ch. D in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-198, 1994. Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979. Hunter, J. A. H. and Madachy, J. S. "Diophantos and All That." Ch. 6 in Mathematical Diversions. New York: Dover, pp. 52-64, 1975. Ireland, K. and Rosen, M. "Diophantine Equations." Ch. 17 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 269-296, 1990. Jones, J. P. and Matiyasevich, Yu. V. "Exponential Diophantine Representation of Recursively Enumerable Sets." Proceedings of the Herbrand Symposium, Marseilles, 1981. Amsterdam, Netherlands: North-Holland, pp. 159-177, 1982. Lang, S. Introduction to Diophantine Approximations, 2nd ed. New York: Springer-Verlag, 1995. Matiyasevich, Yu. V. "Solution of the Tenth Problem of Hilbert." Mat. Lapok 21 , 83-87, 1970. Matiyasevich, Yu. V. Hilbert's Tenth Problem. Cambridge, MA: MIT Press, 1993. http://www.informatik.uni-stuttgart.de/ifi/ti/personen/Matiyasevich/H10Pbook/ . Meyrignac, J.-C. "Computing Minimal Equal Sums of Like Powers." http://euler.free.fr/ . Mordell, L. J. Diophantine Equations. New York: Academic Press, 1969. Nagell, T. "Diophantine Equations of First Degree." §10 in Introduction to Number Theory. New York: Wiley, pp. 29-32, 1951. Ogilvy, C. S. and Anderson, J. T. "Diophantine Equations." Ch. 6 in Excursions in Number Theory. New York: Dover, pp. 65-83, 1988. Olds, C. D. Ch. 2 in Continued Fractions. New York: Random House, 1963. Sloane, N. J. A. Sequence A030052 in "The On-Line Encyclopedia of Integer Sequences." Weisstein, E. W. "Books about Diophantine Equations." http://www.ericweisstein.com/encyclopedias/books/DiophantineEquations.html . 在 Wolfram|Alpha 上被引用 丢番图方程
请引用为
Weisstein, Eric W. "丢番图方程。" 来自 MathWorld --Wolfram Web 资源。 https://mathworld.net.cn/DiophantineEquation.html
学科分类