主题
Search

丢番图性质


一个由 m 个不同的 正整数 组成的集合 S={a_1,...,a_m} 满足阶数为 D(n) n (一个正整数) 的丢番图性质,如果对于所有 i,j=1, ..., mi!=j

 a_ia_j+n=b_(ij)^2,
(1)

b_(ij)s 是 整数。 集合 S 被称为丢番图 n 元组。

丢番图 1-双元组很丰富:(1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (1, 8), (3, 8), (6, 8), (7, 9), (8, 10), (9, 11), ... (OEIS A050269A050270)。 丢番图 1-三元组不太丰富:(1, 3, 8), (2, 4, 12), (1, 8, 15), (3, 5, 16), (4, 6, 20), ... (OEIS A050273, A050274, 和 A050275)。

费马发现了最小的丢番图 1-四元组: {1,3,8,120} (Davenport and Baker 1969, Jones 1976)。 没有其他最大项 <=200 的,Davenport 和 Baker (1969) 表明,如果 c+1, 3c+1, 和 8c+1 都是平方数,那么 c=120

一般的 D(1) 四元组是

 {F_(2n),F_(2n+2),F_(2n+4),4F_(2n+1)F_(2n+2)F_(2n+3),}
(2)

其中 F_n斐波那契数,并且

 {n,n+2,4n+4,4(n+1)(2n+1)(2n+3)}.
(3)

这个四元组

 {2F_(n-1),2F_(n+1),2F_n^3F_(n+1)F_(n+2),2F_(n+1)F_(n+2)F_(n+3)(2F_(n+1)^2-F_n^2)}
(4)

D(F_n^2) (Dujella 1996)。 Dujella (1993) 表明不存在丢番图四元组 D(4k+2)

一个长期的猜想是,不存在整数丢番图五元组 (Gardner 1967, van Lint 1968, Davenport and Baker 1969, Kanagasabapathy and Ponnudurai 1975, Sansone 1976, Grinstead 1978)。

Jones (1976) 推导出一个多项式的无限序列 S={x,x+2,c_1(x),c_2(x),...},使得任意两个连续多项式的乘积加 1,是一个多项式的平方。 令 c_(-1)(x)=c_0(x)=0,则一般的 c_k(x)递推关系 给出

 c_k=(4x^2+8x+2)c_(k-1)-c_(k-2)+4(x+1).
(5)

前几个 c_k

c_1=4(1+x)
(6)
c_2=4(3+11x+12x^2+4x^3)
(7)
c_3=8(3+23x+62x^2+74x^3+40x^4+8x^5).
(8)

x=1 得到序列 s_n=1, 3, 8, 120, 1680, 23408, 326040, ... (OEIS A051047),对于该序列,sqrt(s_ns_(n+1)+1) 是 2, 5, 31, 449, 6271, 87361, ... (OEIS A051048)。


使用 Wolfram|Alpha 探索

参考文献

Brown, E. "Sets in Which xy+k is Always a Square." Math. Comput. 45, 613-620, 1985.Davenport, H. and Baker, A. "The Equations 3x^2-2=y^2 and 8x^2-7=z^2." Quart. J. Math. (Oxford) Ser. 2 20, 129-137, 1969.Diofant Aleksandriĭskiĭ. Arifmetika i kniga o mnogougol'nyh chislakh [Russian]. Moscow: Nauka, 1974.Dujella, A. "Generalization of a Problem of Diophantus." Acta Arith. 65, 15-27, 1993.Dujella, A. "Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers." Portugaliae Math. 52, 305-318, 1995.Dujella, A. "Generalized Fibonacci Numbers and the Problem of Diophantus." Fib. Quart. 34, 164-175, 1996.Dujella, A. "Diophantine m-Tuples-Introduction." http://web.math.hr/~duje/intro.html.Gardner, M. "Mathematical Diversions." Sci. Amer. 216, 124, 1967.Grinstead, C. M. "On a Method of Solving a Class of Diophantine Equations." Math. Comput. 32, 936-940, 1978.Hoggatt, V. E. Jr. and Bergum, G. E. "A Problem of Fermat and the Fibonacci Sequence." Fib. Quart. 15, 323-330, 1977.Jones, B. W. "A Variation of a Problem of Davenport and Diophantus." Quart. J. Math. (Oxford) Ser. (2) 27, 349-353, 1976.Kanagasabapathy, P. and Ponnudurai, T. "The Simultaneous Diophantine Equations y^2-3x^2=-2 and z^2-8x^2=-7." Quart. J. Math. (Oxford) Ser. (2) 26, 275-278, 1975.Morgado, J. "Generalization of a Result of Hoggatt and Bergum on Fibonacci Numbers." Portugaliae Math. 42, 441-445, 1983-1984.Sansone, G. "Il sistema diofanteo N+1=x^2, 3N+1=y^2, 8N+1=z^2." Ann. Mat. Pura Appl. 111, 125-151, 1976.Sloane, N. J. A. Sequences A050269, A050269, A050273, A050274, A050275, A051047, and A051048 in "The On-Line Encyclopedia of Integer Sequences."van Lint, J. H. "On a Set of Diophantine Equations." T. H.-Report 68-WSK-03. Department of Mathematics. Eindhoven, Netherlands: Technological University Eindhoven, 1968.

在 Wolfram|Alpha 中被引用

丢番图性质

请引用为

Weisstein, Eric W. “丢番图性质。” 来自 MathWorld-- Wolfram Web 资源。 https://mathworld.net.cn/DiophantusProperty.html

主题分类