主题
Search

炮弹问题


找到一种方法将地面上排列成正方形的炮弹堆叠成正方金字塔(即,找到一个既是平方数又是平方棱锥数的数)。这对应于解丢番图方程

 sum_(i=1)^ki^2=1/6k(1+k)(1+2k)=N^2

对于某个金字塔高度 k

唯一的解是 (k,N)=(1,1)(24,70) (Ball 和 Coxeter 1987, Dickson 2005),正如 Lucas (1875) 所猜想的,Moret-Blanc (1876) 和 Lucas (1877) 部分证明,以及 Watson (1918) 证明的。Watson 的证明几乎是初等的,用初等方法处理了大多数情况,但对于一个棘手的情况,不得不使用椭圆函数。Ma (1985) 和 Anglin (1990) 给出了完全初等的证明。


另请参阅

球体堆积, 平方数, 正方金字塔, 平方棱锥数

使用 Wolfram|Alpha 探索

参考资料

Anglin, W. S. "The Square Pyramid Puzzle." Amer. Math. Monthly 97, 120-124, 1990.Anglin, W. S. The Queen of Mathematics: An Introduction to Number Theory. Dordrecht, Netherlands: Kluwer, 1995.Baker, A. and Davenport, H. "The Equations 3x^2-2=y^2 and 8x^2-7=z^2." Quart J. Math. Ser. 2 20, 129-137, 1969.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987.Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, p. 25, 2005.Kanagasabapathy, P. and Ponnudurai, T. "The Simultaneous Diophantine Equations y^2-3x^2=-2 and z^2-8x^2=-7." Quart. J. Math. Ser. 2 26, 275-278, 1975.Ljunggren, W. "New Solution of a Problem Posed by E. Lucas." Nordisk Mat. Tidskrift 34, 65-72, 1952.Lucas, É. Question 1180. Nouv. Ann. Math. Ser. 2 14, 336, 1875.Lucas, É. Solution de Question 1180. Nouv. Ann. Math. Ser. 2 15, 429-432, 1877.Ma, D. G. "An Elementary Proof of the Solutions to the Diophantine Equation 6y^2=x(x+1)(2x+1)." Sichuan Daxue Xuebao, No. 4, 107-116, 1985.Moret-Blanc, M. Question 1180. Nouv. Ann. Math. Ser. 2 15, 46-48, 1876.Ogilvy, C. S. and Anderson, J. T. Excursions in Number Theory. New York: Dover, pp. 77 and 152, 1988.Pappas, T. "Cannon Balls & Pyramids." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 93, 1989.Watson, G. N. "The Problem of the Square Pyramid." Messenger. Math. 48, 1-22, 1918.

在 Wolfram|Alpha 中被引用

炮弹问题

引用为

Weisstein, Eric W. "炮弹问题。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/CannonballProblem.html

主题分类