正规连分数是简单连分数
其中
是一个 整数,而
是一个 正整数,对于
(Rockett and Szüsz 1992, p. 3)。
虽然正规连分数不是实数以整数序列形式表示的唯一可能方法(其他方法包括十进制展开和Engel 展开),但它们是一种非常常见的表示方法,在数论中最为常见。Lochs 定理将正规连分数展开的效率与十进制展开在表示实数方面的效率联系起来。
有限正规连分数表示在有限项后终止,因此对应于有理数。(Bach 和 Shallit (1996) 展示了如何根据有理数
的简单连分数计算 Jacobi 符号。)另一方面,无限正规连分数表示唯一的无理数,并且每个无理数都有唯一的无限连分数。无限周期连分数具有许多特殊性质。
正规连分数也用于查找不同周期事件之间的近似公度性。例如,希腊人用于历法目的的默冬周期由 235 个朔望月组成,这非常接近 19 个太阳年,而 235/19 是朔望月(合朔)周期和太阳年周期(365.2425/29.53059)之比的第六个收敛项。正规连分数也可用于计算齿轮比,古希腊人也为此目的使用它们 (Guy 1990)。
通过给定的收敛项近似一个数的误差,大约是第一个被忽略项的分母的平方的倒数。
拉格朗日连分数定理指出,二次无理数具有最终周期连分数。例如,毕达哥拉斯常数
的连分数为 [1; 2, 2, 2, 2, ...]。因此,如果怀疑数值常数表示未知的二次无理数,则有时可以推断出其精确表示。
在某种意义上,正规连分数提供了一系列无理数的“最佳”估计。函数也可以写成(简单或广义)连分数,从而提供一系列越来越好的有理逼近。连分数也被证明在证明数字的某些性质(例如 e 和
(pi))方面很有用。
从
开始正规连分数的索引,
![b_0=|_x_|](/images/equations/RegularContinuedFraction/NumberedEquation1.svg) |
(4)
|
是
的整数部分,其中
是向下取整函数,
![b_1=|_1/(x-b_0)_|](/images/equations/RegularContinuedFraction/NumberedEquation2.svg) |
(5)
|
是
的倒数的整数部分,
![b_2=|_1/(1/(x-b_0)-b_1)_|](/images/equations/RegularContinuedFraction/NumberedEquation3.svg) |
(6)
|
是余数倒数的整数部分,依此类推。根据递推关系写出余数
给出简洁公式
![b_n=|_r_n_|.](/images/equations/RegularContinuedFraction/NumberedEquation4.svg) |
(9)
|
量
称为部分商,并且通过包含
项连分数获得的量
称为第
个收敛项。
例如,考虑计算
的连分数,由
给出。
项 | 值 | 部分商 | 收敛项 | 值 |
![b_0](/images/equations/RegularContinuedFraction/Inline40.svg) | ![|_pi_|=3](/images/equations/RegularContinuedFraction/Inline41.svg) | ![[3]](/images/equations/RegularContinuedFraction/Inline42.svg) | 3 | 3.00000 |
![b_1](/images/equations/RegularContinuedFraction/Inline43.svg) | ![|_1/(pi-3)_|=7](/images/equations/RegularContinuedFraction/Inline44.svg) | ![[3;7]](/images/equations/RegularContinuedFraction/Inline45.svg) | ![(22)/7](/images/equations/RegularContinuedFraction/Inline46.svg) | 3.14286 |
![b_2](/images/equations/RegularContinuedFraction/Inline47.svg) | ![|_1/(1/(pi-3)-7)_|=15](/images/equations/RegularContinuedFraction/Inline48.svg) | ![[3;7,15]](/images/equations/RegularContinuedFraction/Inline49.svg) | ![(333)/(106)](/images/equations/RegularContinuedFraction/Inline50.svg) | 3.14151 |
令
的简单连分数为
。那么极限值几乎总是 Khinchin 常数
![K=lim_(n->infty)(b_1b_2...b_n)^(1/n)=2.68545...](/images/equations/RegularContinuedFraction/NumberedEquation5.svg) |
(13)
|
(OEIS A002210)。
类似地,取第
个收敛项的分母
的第
次根,当
时几乎总是给出 Lévy 常数
![lim_(n->infty)B_n^(1/n)=e^(pi^2/(12ln2))=3.275823...](/images/equations/RegularContinuedFraction/NumberedEquation6.svg) |
(14)
|
(OEIS A086702)。
对数
可以通过定义
, ... 和正整数
, ... 来计算,使得
![b_1^(n_1)<b_0<b_1^(n_1+1) b_2=(b_0)/(b_1^(n_1))](/images/equations/RegularContinuedFraction/NumberedEquation7.svg) |
(15)
|
![b_2^(n_2)<b_1<b_2^(n_2+1) b_3=(b_1)/(b_2^(n_2))](/images/equations/RegularContinuedFraction/NumberedEquation8.svg) |
(16)
|
等等。然后
![log_(b_1)b_0=[n_1,n_2,n_3,...].](/images/equations/RegularContinuedFraction/NumberedEquation9.svg) |
(17)
|
既约分数
的几何解释包括一条穿过点阵的线,端点为
和
(Klein 1896, 1932; Steinhaus 1999, p. 40; Gardner 1984, pp. 210-211, Ball and Coxeter 1987, pp. 86-87; Davenport 1992)。这种解释与最大公约数的类似解释密切相关。它压靠的桩
给出交替收敛项
,而其他收敛项则从它压靠的以
为初始端的桩获得。上面的图是关于
的,其收敛项为 0, 1, 2/3, 3/4, 5/7, ....
连分数可以用来表示任何多项式方程的正根。连分数也可以用来求解线性丢番图方程和 Pell 方程。
Gosper 发明了一种算法,用于使用连分数执行解析加法、减法、乘法和除法。它需要跟踪八个整数,这些整数在概念上排列在立方体的多面体顶点上。虽然这种算法尚未印刷出版,但 Vuillemin (1987) 和 Liardet 和 Stambul (1998) 构建了类似的算法。
Gosper 的算法用于计算
的连分数的
的连分数,由 Gosper (1972)、Knuth (1998, 练习 4.5.3.15, pp. 360 和 601) 和 Fowler (1999) 描述。(在 Knuth 解的第 9 行中,
应替换为
。)Gosper (1972) 和 Knuth (1981) 也提到了二元情况
。
另请参阅
连分数,
收敛项,
广义连分数,
Khinchin 常数,
拉格朗日连分数定理,
Lévy 常数,
Lochs 定理,
部分分母,
周期连分数,
简单连分数
使用 Wolfram|Alpha 探索
参考文献
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 19, 1972.Acton, F. S. "Power Series, Continued Fractions, and Rational Approximations." Ch. 11 in Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., 1990.Adamchik, V. "Limits of Continued Fractions and Nested Radicals." Mathematica J. 2, 54-57, 1992.Bach, E. and Shallit, J. Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, pp. 343-344, 1996.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 54-57 and 86-87, 1987.Berndt, B. C. and Gesztesy, F. (Eds.). Continued Fractions: From Analytic Number Theory to Constructive Approximation, A Volume in Honor of L. J. Lange. Providence, RI: Amer. Math. Soc., 1999.Beskin, N. M. Fascinating Fractions. Moscow: Mir Publishers, 1980.Brezinski, C. History of Continued Fractions and Padé Approximants. New York: Springer-Verlag, 1980.Conway, J. H. and Guy, R. K. "Continued Fractions." In The Book of Numbers. New York: Springer-Verlag, pp. 176-179, 1996.Courant, R. and Robbins, H. "Continued Fractions. Diophantine Equations." §2.4 in Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 49-51, 1996.Cuyt, A.; Petersen, A. B.; Verdonk, B.; Waadeland, H.; and Jones, W. B. Handbook of Continued Fractions for Special Functions. New York: Springer, 2008.Davenport, H. §IV.12 in The Higher Arithmetic: An Introduction to the Theory of Numbers, 6th ed. New York: Cambridge University Press, 1992.Dunne, E. and McConnell, M. "Pianos and Continued Fractions." Math. Mag. 72, 104-115, 1999.Euler, L. "On the Formulation of Continued Fractions." Delivered to the St. Petersburg Academy, Sept. 4, 1775. Published as Euler, L. "De formatione fractionum continuarum." Acta Academiae Scientarum Imperialis Petropolitinae 3, 3-29, 1782. Republished in Euler, L. Opera Omnia, Ser. 1: Opera mathematica, Vol. 15. Basel, Switzerland: Birkhäuser, 1992. http://arxiv.org/abs/math.HO/0508227.Euler, L. Introduction to Analysis of the Infinite, Book I. New York: Springer-Verlag, 1980.Fowler, D. H. The Mathematics of Plato's Academy: A New Reconstruction, 2nd ed. Oxford, England: Oxford University Press, 1999.Fowler, D. "Wallis and Number Columns by David Fowler." http://mathforum.org/epigone/math-history-list/sterbloirerm.Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 210-211, 1984.Gosper, R. W. "Continued fractions query." [email protected] posting, Dec. 27, 1996.Gosper, R. W. Item 101a in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, pp. 37-39, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/cf.html#item101a.Gosper, R. W. Item 101b in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, pp. 39-44, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/cf.html#item101b.Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Continuants." §6.7 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 301-309, 1994.Guy, R. K. "Continued Fractions" §F20 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 259, 1994.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.Jacobson, M. J. Jr.; Lukes, R. F.; and Williams, H. C. "An Investigation of Bounds for the Regulator of Quadratic Fields." Experiment. Math. 4, 211-225, 1995.Khinchin, A. Ya. Continued Fractions. New York: Dover, 1997.Kimberling, C. "Continued Fractions." http://faculty.evansville.edu/ck6/integer/contfr.html.Klein, F. Ausgewählte Kapitel der Zahlentheorie I. Göttingen, Germany: n.p., 1896.Klein, F. Elementary Number Theory. New York, p. 44, 1932.Kline, M. Mathematical Thought from Ancient to Modern Times. Oxford, England: Oxford University Press, 1990.Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, p. 316, 1998.Liardet, P. and Stambul, P. "Algebraic Computation with Continued Fractions." J. Number Th. 73, 92-121, 1998.Liberman, H. Simple Continued Fractions: An Elementary to Research Level Approach. SMD Stock Analysts, 2003.Lorentzen, L. and Waadeland, H. Continued Fractions with Applications. Amsterdam, Netherlands: North-Holland, 1992.Lorentzen, L. and Waadeland, H. Continued Fractions, 2nd ed., Vol. 1: Convergence Theory. Amsterdam, Netherlands/Paris: Atlantis Press/World Scientific, 2008.Moore, C. D. An Introduction to Continued Fractions. Washington, DC: National Council of Teachers of Mathematics, 1964.Olds, C. D. Continued Fractions. New York: Random House, 1963.Perron, O. Die Lehre von den Kettenbrüchen, 3. verb. und erweiterte Aufl. Stuttgart, Germany: Teubner, 1954-57.Pettofrezzo, A. J. and Bykrit, D. R. Elements of Number Theory. Englewood Cliffs, NJ: Prentice-Hall, 1970.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Evaluation of Continued Fractions." §5.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 163-167, 1992.Riesel, H. "Continued Fractions." Appendix 8 in Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 327-342, 1994.Rockett, A. M. and Szüsz, P. Continued Fractions. New York: World Scientific, 1992.Rose, H. E. A Course in Number Theory, 2nd ed. Oxford, England: Oxford University Press, 1994.Rosen, K. H. Elementary Number Theory and Its Applications. New York: Addison-Wesley, 1980.Schur, I. "Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche." Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse, pp. 302-321, 1917.Sloane, N. J. A. Sequences A000037/M0613, A013943, A052119, A111129, and A113011 in "The On-Line Encyclopedia of Integer Sequences."Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 39-42, 1999.Van Tuyl, A. L. "Continued Fractions." http://archives.math.utk.edu/articles/atuyl/confrac/.Vuillemin, J. "Exact Real Computer Arithmetic with Continued Fractions." INRIA Report 760. Le Chesnay, France: INRIA, Nov. 1987. http://www.inria.fr/RRRT/RR-0760.html.Wagon, S. "Continued Fractions." §8.5 in Mathematica in Action. New York: W. H. Freeman, pp. 263-271, 1991.Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.Wallis, J. Arithmetica Infinitorum. Oxford, England, 1656.Weisstein, E. W. "Books about Continued Fractions." http://www.ericweisstein.com/encyclopedias/books/ContinuedFractions.html.Williams, H. C. "A Numerical Investigation into the Length of the Period of the Continued Fraction Expansion of
." Math. Comput. 36, 593-601, 1981.
引用为
Weisstein, Eric W. “正规连分数。” 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/RegularContinuedFraction.html
主题分类