另请参阅
13次根,
艾里函数零点,
贝塞尔函数零点,
笛卡尔符号法则,
对称函数基本定理,
内外定理,
等值线图,
重数,
n次方根,
多项式,
多项式根,
根拖动定理,
求根,
求根算法,
根图,
根分离,
儒歇定理,
单根,
平方根,
斯特姆函数,
斯特姆定理,
消失,
魏尔斯特拉斯逼近定理,
零,
零集 在 MathWorld 课堂中探索此主题
使用 Wolfram|Alpha 探索
参考文献
Arfken, G. "Appendix 1: Real Zeros of a Function." Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 963-967, 1985.Boyer, C. B. A History of Mathematics. New York: Wiley, 1968.Householder, A. S. The Numerical Treatment of a Single Nonlinear Equation. New York: McGraw-Hill, 1970.Kravanja, P. and van Barel, M. Computing the Zeros of Analytic Functions. Berlin: Springer-Verlag, 2000.McNamee, J. M. "A Bibliography on Roots of Polynomials." J. Comput. Appl. Math. 47, 391-392, 1993.McNamee, J. M. "A Bibliography on Roots of Polynomials." http://www.elsevier.com/homepage/sac/cam/mcnamee/.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Roots of Polynomials." §9.5 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 362-372, 1992.Whittaker, E. T. and Robinson, G. "The Numerical Solution of Algebraic and Transcendental Equations." Ch. 6 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 78-131, 1967.在 Wolfram|Alpha 中被引用
根
请这样引用
韦斯坦因,埃里克·W. "根。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/Root.html
主题分类