主题
Search

数论


数论是数学中一个广阔而引人入胜的领域,有时被称为“高等算术”,包括对整数性质的研究。 素数素因数分解 在数论中尤其重要,一些函数如 除数函数黎曼zeta函数欧拉函数 也很重要。在 Ore (1988) 和 Beiler (1966) 中可以找到对数论的出色介绍。关于该主题的经典历史(现在略有过时)是 Dickson (2005abc) 的著作。

在数论中证明相对简单的结果的巨大困难促使高斯这样评论道:“正是这一点赋予了高等算术神奇的魅力,使其成为最伟大数学家最喜爱的科学,更不用说它取之不尽的财富,在这方面它大大超过了数学的其他部分。” 高斯,通常被称为“数学王子”,称数学为“科学女王”,并将数论视为“数学女王”(Beiler 1966,Goldman 1997)。


另请参阅

抽象代数, 加法数论, 代数数论, 解析数论, 算术, 计算数论, 同余, 丢番图方程, 除数函数, 初等数论, 哥德尔第一不完备性定理, 哥德尔第二不完备性定理, 乘法数论, 数论函数, 皮亚诺公理, 素数计数函数, 素因数分解, 素数, 二次互反律, 黎曼zeta函数, 欧拉函数 在 MathWorld 教室中探索此主题

使用 Wolfram|Alpha 探索

参考文献

Andrews, G. E. Number Theory. New York: Dover, 1994.Andrews, G. E.; Berndt, B. C.; and Rankin, R. A. (Ed.). Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987. Boston, MA: Academic Press, 1988.Anglin, W. S. The Queen of Mathematics: An Introduction to Number Theory. Dordrecht, Netherlands: Kluwer, 1995.Apostol, T. M. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.Ayoub, R. G. An Introduction to the Analytic Theory of Numbers. Providence, RI: Amer. Math. Soc., 1963.Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, 2nd ed. New York: Dover, 1966.Bellman, R. E. Analytic Number Theory: An Introduction. Reading, MA: Benjamin/Cummings, 1980.Berndt, B. C. Ramanujan's Notebooks, Part I. New York: Springer-Verlag, 1985.Berndt, B. C. Ramanujan's Notebooks, Part II. New York: Springer-Verlag, 1988.Berndt, B. C. Ramanujan's Notebooks, Part III. New York: Springer-Verlag, 1997a.Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1993.Berndt, B. C. Ramanujan's Notebooks, Part V. New York: Springer-Verlag, 1997b.Berndt, B. C. and Rankin, R. A. Ramanujan: Letters and Commentary. Providence, RI: Amer. Math. Soc, 1995.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.Bressoud, D. M. and Wagon, S. A Course in Computational Number Theory. London: Springer-Verlag, 2000.Burr, S. A. The Unreasonable Effectiveness of Number Theory. Providence, RI: Amer. Math. Soc., 1992.Burton, D. M. Elementary Number Theory, 4th ed. Boston, MA: Allyn and Bacon, 1989.Carmichael, R. D. The Theory of Numbers, and Diophantine Analysis. New York: Dover, 1959.Cohen, H. Advanced Topics in Computational Number Theory. New York: Springer-Verlag, 2000.Cohn, H. Advanced Number Theory. New York: Dover, 1980.Courant, R. and Robbins, H. "The Theory of Numbers." Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 21-51, 1996.Davenport, H. The Higher Arithmetic: An Introduction to the Theory of Numbers, 6th ed. Cambridge, England: Cambridge University Press, 1992.Davenport, H. and Montgomery, H. L. Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, 1980.Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, 2005a.Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005b.Dickson, L. E. History of the Theory of Numbers, Vol. 3: Quadratic and Higher Forms. New York: Dover, 2005c.Dudley, U. Elementary Number Theory. San Francisco, CA: W. H. Freeman, 1978.Friedberg, R. An Adventurer's Guide to Number Theory. New York: Dover, 1994.Gauss, C. F. Disquisitiones Arithmeticae. New Haven, CT: Yale University Press, 1966.Goldman, J. R. The Queen of Mathematics: An Historically Motivated Guide to Number Theory. Wellesley, MA: A K Peters, 1997.Guy, R. K. Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, 2004.Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1959.Hasse, H. Number Theory. Berlin: Springer-Verlag, 1980.Herkommer, M. A. Number Theory: A Programmer's Guide. New York: McGraw-Hill, 1999.Ireland, K. F. and Rosen, M. I. A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, 1995.Kato, K.; Kurokawa, N.; and Saito, T. Number Theory 1: Fermat's Dream. Providence, RI: Amer. Math. Soc., 2000.Klee, V. and Wagon, S. Old and New Unsolved Problems in Plane Geometry and Number Theory. Washington, DC: Math. Assoc. Amer., 1991.Koblitz, N. A Course in Number Theory and Cryptography. New York: Springer-Verlag, 1987.Landau, E. Elementary Number Theory, 2nd ed. New York: Chelsea, 1999.Lang, S. Algebraic Number Theory, 2nd ed. New York: Springer-Verlag, 1994.Lenstra, H. W. and Tijdeman, R. (Eds.). Computational Methods in Number Theory, 2 vols. Amsterdam: Mathematisch Centrum, 1982.LeVeque, W. J. Fundamentals of Number Theory. New York: Dover, 1996.MathPages. "Number Theory." http://www.mathpages.com/home/inumber.htm.Mitrinović, D. S. and Sándor, J. Handbook of Number Theory. Dordrecht, Netherlands: Kluwer, 1995.Mollin, R. A. Algebraic Number Theory. Boca Raton, FL: CRC Press, 1999.Mollin, R. A. Fundamental Number Theory with Applications. Boca Raton, FL: CRC Press, 1998.Niven, I. M.; Zuckerman, H. S.; and Montgomery, H. L. An Introduction to the Theory of Numbers, 5th ed. New York: Wiley, 1991.Ogilvy, C. S. and Anderson, J. T. Excursions in Number Theory. New York: Dover, 1988.Ore, Ø. Invitation to Number Theory. Washington, DC: Math. Assoc. Amer., 1967.Ore, Ø. Number Theory and Its History. New York: Dover, 1988.Rose, H. E. A Course in Number Theory, 2nd ed. Oxford, England: Clarendon Press, 1995.Rosen, K. H. Elementary Number Theory and Its Applications, 3rd ed. Reading, MA: Addison-Wesley, 1993.Schroeder, M. R. Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity, 3rd ed. New York: Springer-Verlag, 1997.Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993.Sierpinski, W. 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970.Uspensky, J. V. and Heaslet, M. A. Elementary Number Theory. New York: McGraw-Hill, 1939.Vinogradov, I. M. Elements of Number Theory, 5th rev. ed. New York: Dover, 1954.Weil, A. Basic Number Theory, 3rd ed. Berlin: Springer-Verlag, 1995.Weil, A. Number Theory: An Approach Through History From Hammurapi to Legendre. Boston, MA: Birkhäuser, 1984.Weisstein, E. W. "Books about Number Theory." http://www.ericweisstein.com/encyclopedias/books/NumberTheory.html.Weyl, H. Algebraic Theory of Numbers. Princeton, NJ: Princeton University Press, 1998.Yildirim, C. Y. and Stepanov, S. A. (Eds.). Number Theory and Its Applications. New York: Dekker, 1998.Young, J. W. A. "The Theory of Numbers." Ch. 7 in Monographs on Topics of Modern Mathematics Relevant to the Elementary Field (Ed. J. W. A. Young). New York: Dover, pp. 306-349, 1955.

在 Wolfram|Alpha 中引用

数论

如此引用

Weisstein, Eric W. “数论。” 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/NumberTheory.html

主题分类