(OEIS A010815), 其中 是 nome nome 的平方, 是半周期比 half-period ratio, 并且 是一个 q-级数 q-series (Weber 1902, pp. 85 and 112; Atkin and Morain 1993; Berndt 1994, p. 139)。
Apostol, T. M. "The Dedekind Eta Function." Ch. 3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 47-73, 1997.Atkin, A. O. L. and Morain, F. "Elliptic Curves and Primality Proving." Math. Comput.61, 29-68, 1993.Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.Bhargava, S. and Somashekara, D. "Some Eta-Function Identities Deducible from Ramanujan's Summation." J. Math. Anal. Appl.176, 554-560, 1993.Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.Hirschhorn, M. D. "Another Short Proof of Ramanujan's Mod 5 Partition Congruences, and More." Amer. Math. Monthly106, 580-583, 1999.Jacobi, C. G. J. Fundamenta Nova Theoriae Functionum Ellipticarum. Königsberg, Germany: Regiomonti, Sumtibus fratrum Borntraeger, p. 90, 1829.Leininger, V. E. and Milne, S. C. "Expansions for and Basic Hypergeometric Series in ." Discr. Math.204, 281-317, 1999a.Leininger, V. E. and Milne, S. C. "Some New Infinite Families of -Function Identities." Methods Appl. Anal.6, 225-248, 1999b.Köhler, G. "Some Eta-Identities Arising from Theta Series." Math. Scand.66, 147-154, 1990.Macdonald, I. G. "Affine Root Systems and Dedekind's -Function." Invent. Math.15, 91-143, 1972.Ramanujan, S. "On Certain Arithmetical Functions." Trans. Cambridge Philos. Soc.22, 159-184, 1916.Siegel, C. L. "A Simple Proof of ." Mathematika1, 4, 1954.Sloane, N. J. A. Sequences A010815, A091343, and A116397 in "The On-Line Encyclopedia of Integer Sequences."Weber, H. Lehrbuch der Algebra, Vols. I-III. 1902. Reprinted as Lehrbuch der Algebra, Vols. I-III, 3rd rev ed. New York: Chelsea, 1979.