主题
Search

雅可比三重积


雅可比三重积是优美的恒等式

 product_(n=1)^infty(1-x^(2n))(1+x^(2n-1)z^2)(1+(x^(2n-1))/(z^2))=sum_(m=-infty)^inftyx^(m^2)z^(2m).
(1)

Q-函数 表示,(1) 可以写成

 Q_1Q_2Q_3=1,
(2)

这是两个 雅可比恒等式 之一。在 q-级数 符号中,雅可比三重积恒等式写为

 (q,-xq,-1/x;q)_infty=sum_(k=-infty)^inftyx^kq^(k(k+1)/2)
(3)

对于 0<|q|<1x!=0 (Gasper and Rahman 1990, p. 12; Leininger and Milne 1999)。该恒等式的另一种形式是

 sum_(n=-infty)^infty(-1)^na^nq^(n(n-1)/2)=product_(n=1)^infty(1-aq^(n-1))(1-a^(-1)q^n)(1-q^n)
(4)

(Hirschhorn 1999)。

将 (4) 除以 1-a 并令 a->1 得到极限情况

(q,q)_infty^3=sum_(n=0)^(infty)(-1)^n(2n+1)q^(n(n+1)/2)
(5)
=1/2sum_(n=-infty)^(infty)(-1)^n(2n+1)q^(n(n+1)/2)
(6)

(Jacobi 1829; Hardy and Wright 1979; Hardy 1999, p. 87; Hirschhorn 1999; Leininger and Milne 1999)。

对于特殊情况 z=1,(◇) 变为

theta_3(x)=G(1)
(7)
=product_(n=1)^(infty)(1+x^(2n-1))^2(1-x^(2n))
(8)
=sum_(m=-infty)^(infty)x^(m^2)
(9)
=1+2sum_(m=1)^(infty)x^(m^2),
(10)

其中 theta_3(x) 是一个 雅可比椭圆函数。用双变量 拉马努金 theta 函数 f(a,b) 表示,雅可比三重积等价于

 f(a,b)=(-a;ab)_infty(-b;ab)_infty(ab;ab)_infty
(11)

(Berndt et al. 2000)。

雅可比恒等式的一种证明方法是通过定义函数

F(z)=product_(n=1)^(infty)(1+x^(2n-1)z^2)(1+(x^(2n-1))/(z^2))
(12)
=(1+xz^2)(1+x/(z^2))(1+x^3z^2)(1+(x^3)/(z^2))(1+x^5z^2)(1+(x^5)/(z^2))....
(13)

然后

F(xz)=(1+x^3z^2)(1+1/(xz^2))(1+x^5z^2)(1+x/(z^2))×(1+x^7z^2)(1+(x^3)/(z^2))....
(14)

取 (14) ÷ (13),

(F(xz))/(F(z))=(1+1/(xz^2))(1/(1+xz^2))
(15)
=(xz^2+1)/(xz^2)1/(1+xz^2)=1/(xz^2),
(16)

得到基本关系式

 xz^2F(xz)=F(z).
(17)

现在定义

 G(z)=F(z)product_(n=1)^infty(1-x^(2n))
(18)
 G(xz)=F(xz)product_(n=1)^infty(1-x^(2n)).
(19)

使用 (17),(19) 变为

G(xz)=(F(z))/(xz^2)product_(n=1)^(infty)(1-x^(2n))
(20)
=(G(z))/(xz^2),
(21)

所以

 G(z)=xz^2G(xz).
(22)

G 展开为 洛朗级数。由于 G 是一个 偶函数洛朗级数 仅包含偶数项。

 G(z)=sum_(m=-infty)^inftya_mz^(2m).
(23)

方程 (22) 随后要求

sum_(m=-infty)^(infty)a_mz^(2m)=xz^2sum_(m=-infty)^(infty)a_m(xz)^(2m)
(24)
=sum_(m=-infty)^(infty)a_mx^(2m+1)z^(2m+2).
(25)

这可以用 m^'=m-1 在 (25) 的左侧重新索引

 sum_(m=-infty)^inftya_mz^(2m)=sum_(m=-infty)^inftya_mx^(2m-1)z^(2m),
(26)

这提供了一个 递推关系

 a_m=a_(m-1)x^(2m-1),
(27)

所以

a_1=a_0x
(28)
a_2=a_1x^3=a_0x^(3+1)=a_0x^4=a_0x^(2^2)
(29)
a_3=a_2x^5=a_0x^(5+4)=a_0x^9=a_0x^(3^2).
(30)

对于 m 每增加 1,指数增加 (2m-1)。它由下式给出

 sum_(n=1)^m(2m-1)=2(m(m+1))/2-m=m^2.
(31)

因此,

 a_m=a_0x^(m^2).
(32)

这意味着

 G(z)=a_0sum_(m=-infty)^inftyx^(m^2)z^(2m).
(33)

系数 a_0 必须通过回到 (◇) 和 (◇) 并令 z=1 来确定。然后

F(1)=product_(n=1)^(infty)(1+x^(2n-1))(1+x^(2n-1))
(34)
=product_(n=1)^(infty)(1+x^(2n-1))^2
(35)
G(1)=F(1)product_(n=1)^(infty)(1-x^(2n))
(36)
=product_(n=1)^(infty)(1+x^(2n-1))^2product_(n=1)^(infty)(1-x^(2n))
(37)
=product_(n=1)^(infty)(1+x^(2n-1))^2(1-x^(2n)),
(38)

由于乘法是 结合律。从这个表达式可以清楚地看出,a_0 项必须为 1,因为所有其他项都将包含更高的 x。因此,

 a_0=1,
(39)

所以我们有雅可比三重积,

G(z)=product_(n=1)^(infty)(1-x^(2n))(1+x^(2n-1)z^2)(1+(x^(2n-1))/(z^2))
(40)
=sum_(m=-infty)^(infty)x^(m^2)z^(2m).
(41)

另请参见

欧拉恒等式雅可比恒等式划分函数 QQ-函数五重积恒等式拉马努金 Psi 和拉马努金 Theta 函数施罗特公式七重积恒等式

在 Wolfram|Alpha 上探索

参考文献

Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., pp. 63-64, 1986.Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, p. 222, 2007.Berndt, B. C.; Huang, S.-S.; Sohn, J.; and Son, S. H. "Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook." Trans. Amer. Math. Soc. 352, 2157-2177, 2000.Borwein, J. M. and Borwein, P. B. "Jacobi's Triple Product and Some Number Theoretic Applications." Ch. 3 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 62-101, 1987.Foata, D. and Han, G.-N. "The Triple, Quintuple and Septuple Product Identities Revisited." In The Andrews Festschrift (Maratea, 1998): Papers from the Seminar in Honor of George Andrews on the Occasion of His 60th Birthday Held in Maratea, August 31-September 6, 1998. Sém. Lothar. Combin. 42, Art. B42o, 1-12, 1999 (electronic).Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.Hirschhorn, M. D. "Another Short Proof of Ramanujan's Mod 5 Partition Congruences, and More." Amer. Math. Monthly 106, 580-583, 1999.Jacobi, C. G. J. Fundamenta Nova Theoriae Functionum Ellipticarum. Königsberg, Germany: Regiomonti, Sumtibus fratrum Borntraeger, p. 90, 1829.Leininger, V. E. and Milne, S. C. "Expansions for (q)_infty^(n^2+n) and Basic Hypergeometric Series in U(n)." Discr. Math. 204, 281-317, 1999.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, p. 470, 1990.

在 Wolfram|Alpha 上引用

雅可比三重积

请引用为

Eric W. Weisstein。“雅可比三重积”。来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/JacobiTripleProduct.html

学科分类