主题
Search

索迪圆


SoddyCircles

给定三个非共线点,构造三个相切圆,使得每个点为一个圆的圆心,且这些圆两两相切。然后,恰好存在两个不相交的,它们与所有这三个。这些圆被称为索迪圆和外索迪圆,它们的圆心分别被称为索迪中心 S索迪中心 S^'

弗雷德里克·索迪 (Frederick Soddy) (1936) 给出了计算索迪圆 (r_4) 半径公式,已知其他三个圆的半径 r_i (i=1, 2, 3)。关系式是

 2(epsilon_1^2+epsilon_2^2+epsilon_3^2+epsilon_4^2)=(epsilon_1+epsilon_2+epsilon_3+epsilon_4)^2,
(1)

其中 epsilon_i=+/-kappa_i=+/-1/r_i 是所谓的弯曲率,定义为的有符号曲率。如果所有接触都是外切的,则符号都取号,而如果一个圆包围了其他三个圆,则该圆的符号取号 (Coxeter 1969)。使用二次公式求解 epsilon_4,用半径而不是曲率表示,并简化得到

 r_4^+/-=(r_1r_2r_3)/(r_1r_2+r_1r_3+r_2r_3+/-2sqrt(r_1r_2r_3(r_1+r_2+r_3))).
(2)

这里,解对应于外索迪圆,解对应于内索迪圆。

任意四个两两相切的圆,其切点中,相对切点的连线三线共点,“相对”在这里指的是确定一个切点的两个圆与确定另一个切点的两个圆不同 (Eppstein 2001)。这一事实引出了第一第二 Eppstein 点。

这个公式被称为笛卡尔圆定理,因为它在笛卡尔时代就已为人所知。索迪将结果扩展到相切球体,而 Gosper 进一步将结果扩展到 n+2 个两两相切的 n超球体

Bellew 推导出了一个更广泛的公式,适用于一个n包围,而这 n 个圆又被另一个外接的情况。关系式是

 [n(c_n-1)^2+1]sum_(i=1)^(n+1)kappa_i^2+n(3nc_n^2-2n-6)c_n^2(c_n-1)^2=[(f(n))/(n(c_n-1)+1)]^2,
(3)

其中 kappa_(n+1) 是中心圆的曲率,

 f(n)=[n(c_n-1)^2+1]sum_(i=1)^(n+1)kappa_i+nc_n(c_n-1)[nc_n^2+(3-n)c_n-4]
(4)

并且

 c_n=csc(pi/n).
(5)

对于 n=3,这简化为笛卡尔圆定理

 2sum_(i=1)^4kappa_i^2=(sum_(i=1)^4kappa_i)^2.
(6)

另请参阅

Apollonian Gasket, Apollonius Circle, Apollonius' Problem, Arbelos, Bend, Bowl of Integers, Circumcircle, Descartes Circle Theorem, Excentral Triangle, Four Coins Problem, Hart's Theorem, Inner Soddy Center, Inner Soddy Circle, Malfatti Circles, Outer Soddy Center, Outer Soddy Circle, Pappus Chain, Soddy Centers, Soddy Triangles, Sphere Packing, Steiner Chain, Tangent Circles, Tangent Spheres

使用 Wolfram|Alpha 探索

参考文献

Berger, M.; Pansu, P.; Berry, J.-P.; and Saint-Raymond, X. Problems in Geometry. New York: Springer-Verlag, 1984.Boyd, D. W. "The Sequence of Radii of the Apollonian Packing." Math. Comput. 39, 249-254, 1982.Coxeter, H. S. M. "The Problem of Apollonius." Amer. Math. Monthly 75, 5-15, 1968.Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New York: Wiley, pp. 13-14, 1969.Dergiades, N. "The Soddy Circles." Forum Geometricorum 7, 191-197, 2007. http://forumgeom.fau.edu/FG2007volume7/FG200726index.html.Dodds, P. S. and Weitz, J. S. "Packing-Limited Growth." Phys. Rev. E 65, 056108, 2002.Elkies, N. D. and Fukuta, J. "Problem E3236 and Solution." Amer. Math. Monthly 97, 529-531, 1990.Eppstein, D. "Tangent Spheres and Triangle Centers." Amer. Math. Monthly 108, 63-66, 2001.Fillmore, J. P. and Paluszny, M. Seminarberichte Mathematik Fernuniversität Hagen 62, 45, 1997.Gardner, M. Fractal Music, Hypercards, and More: Mathematical Recreations from Scientific American Magazine. New York: W. H. Freeman, 1992.Gosper, R. W. "Soddy's Theorem on Mutually Tangent Circles, Generalized to n Dimensions." http://www.ippi.com/rwg/Sodddy.htm.Graham, R. L.; Lagarias, J. C.; Mallows, C. L.; Wilks, A. R.; and Yan, C. H. "Apollonian Circle Packings: Geometry and Group Theory I. The Apollonian Group." 15 Jul 2004. http://arxiv.org/abs/math/0010298.Graham, R. L.; Lagarias, J. C.; Mallows, C. L.; Wilks, A. R.; and Yan, C. H. "Apollonian Circle Packings: Geometry and Group Theory II. Super-Apollonian Group and Integral Packings." 15 Jul 2004. http://arxiv.org/abs/math/0010302.Graham, R. L.; Lagarias, J. C.; Mallows, C. L.; Wilks, A. R.; and Yan, C. H. "Apollonian Circle Packings: Geometry and Group Theory III. Higher Dimensions." 16 Jun 2004. http://arxiv.org/abs/math/0010324.Graham, R. L.; Lagarias, J. C.; Mallows, C. L.; Wilks, A. R.; and Yan, C. H. "Apollonian Circle Packings: Number Theory." J. Number Th. 100, 1-45, 2003.Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle." Math. Mag. 67, p. 181, 1994.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998."The Kiss Precise." Nature 139, 62, 1937.Martini, H. In Geometrie und ihre Anwendungen in Kunst, Natur und Technik (Ed. O. Giering and J. Hoschek). Munich, Germany: Carl Hanser, 1994.Oldknow, A. "Computer Aided Research into the Geometry of the Triangle." Math. Gaz. 79, 263-274, 1995.Söderberg, B. Phys. Rev. A 46, 1859, 1992.Soddy, F. "The Kiss Precise." Nature 137, 1021, 1936.Study, E. Math. Ann. 49, 497, 1897.Vandeghen, A. "Soddy's Circles and the De Longchamps Point of a Triangle." Amer. Math. Monthly 71, 176-179, 1964.Veldkamp, G. R. "A Theorem Concerning Soddy-Circles." Elem. Math. 21, 15-17, 1966.Veldkamp, G. R. "The Isoperimetric Point and the Point(s) of Equal Detour." Amer. Math. Monthly 92, 546-558, 1985.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 4-5, 1991.

在 Wolfram|Alpha 中被引用

索迪圆

请这样引用

Weisstein, Eric W. “索迪圆.” 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/SoddyCircles.html

主题分类