主题
Search

马尔法蒂圆


MalfattiCircles

三个圆被放置在一个三角形内部,每个圆都与其他两个圆以及三角形的两条边相切,这三个圆被称为马尔法蒂圆。马尔法蒂构型出现在 Martin (1998) 的封面上。

MalfattiCircleConstruction

马尔法蒂圆的位置和半径可以通过标记边和距离来找到,如上图所示。连接圆 Gamma_1Gamma_2 的线段在边 AB 上的投影长度可以从右图看出为:

d_(12)=sqrt((r_1+r_2)^2-(r_2-r_1)^2)
(1)
=2sqrt(r_1r_2).
(2)

因此,从标记长度之和必须等于边长的条件可以得出三个方程:

c=d_1+2sqrt(r_1r_2)+d_2
(3)
a=d_2+2sqrt(r_2r_3)+d_3
(4)
b=d_3+2sqrt(r_3r_1)+d_1.
(5)

另外三个方程来自于圆心位于三角形顶点的对应角平分线上的事实,因此:

tan(1/2A)=(r_1)/(d_1)
(6)
tan(1/2B)=(r_2)/(d_2)
(7)
tan(1/2C)=(r_3)/(d_3).
(8)

将这些方程用边长重新表示,并重新排列和平方以消除平方根,然后得到六个多项式方程组:

4r_1r_2=(d_1+d_2-c)^2
(9)
4r_2r_3=(d_2+d_3-a)^2
(10)
4r_1r_3=(d_1+d_3-b)^2
(11)
2bc(d_1^2-r_1^2)=(d_1^2+r_1^2)(-a^2+b^2+c^2)
(12)
2ac(d_2^2-r_2^2)=(d_2^2+r_2^2)(a^2-b^2+c^2)
(13)
2ab(d_3^2-r_3^2)=(d_3^2+r_3^2)(a^2+b^2-c^2).
(14)

这个系统可以同时求解半径和距离。A-圆的半径和位置由复杂结果多项式的适当根给出:

 f(a,b,c)=4096(a-b-c)^3(a+b+c)^2x^8+8192(a-b-c)^3(a+b-c)(a-b+c)(a+b+c)x^7+8192(a-b-c)^2(a+b-c)(a-b+c)(a^3+bca+b^3+c^3)x^6+1024(a-b-c)^2(a+b-c)^2(a-b+c)^2(5a^2+2ba+2ca+5b^2+5c^2+2bc)x^5+128(a-b-c)(a+b-c)^2(a-b+c)^2(17a^4-2b^2a^2-2c^2a^2+17b^4+17c^4-2b^2c^2)x^4+128(a-b-c)(a+b-c)^3(a-b+c)^3(5a^3+3ba^2+3ca^2+3b^2a+3c^2a-14bca+5b^3+5c^3+3bc^2+3b^2c)x^3+128(a+b-c)^3(a-b+c)^3(a^5-b^2a^3-c^2a^3-3bca^3-b^3a^2-c^3a^2+6bc^2a^2+6b^2ca^2-3bc^3a+6b^2c^2a-3b^3ca+b^5+c^5-b^2c^3-b^3c^2)x^2+16(a-b-c)(a+b-c)^5(a-b+c)^5(a+b+c)r_1+(a-b-c)(a+b-c)^6(a-b+c)^6.
(15)

特别是:

R_A=(f(a,b,c))_i
(16)
R_B=(f(b,c,a))_j
(17)
R_C=(f(c,a,b))_k
(18)

其中 (f)_i 是一个 多项式根,中心由下式给出:

C_A=(sqrt((-a+b+c)(a+b-c)(a-b+c)(a+b+c)))/(2(f(a,b,c))_i)-(b+c):a:a
(19)
C_B=b:(sqrt((-a+b+c)(a+b-c)(a-b+c)(a+b+c)))/(2(f(b,c,a))_j)-(a+c):b
(20)
C_C=c:c:(sqrt((-a+b+c)(a+b-c)(a-b+c)(a+b+c)))/(2(f(c,a,b))_k)-(a+b).
(21)

设圆的半径为 r_1r_2r_3。那么,内切这些圆的三角形的内半径 r 由下式给出:

r=(sqrt(r_1r_2r_3)(sqrt(r_1)+sqrt(r_2)+sqrt(r_3)+sqrt(r_1+r_2+r_3)))/(sqrt(r_1r_2)+sqrt(r_2r_3)+sqrt(r_3r_1))
(22)
=(2sqrt(r_1r_2r_3))/(sqrt(r_1)+sqrt(r_2)+sqrt(r_3)-sqrt(r_1+r_2+r_3))
(23)

(Fukagawa and Pedoe 1989, 第 106 页)。

尽管多年来人们认为这些圆提供了马尔法蒂问题的解,但后来证明它们从不提供解。


另请参阅

阿基米-马尔法蒂点, 阿波罗垫片, 马尔法蒂问题, 马尔法蒂三角形, 弹珠问题, 索迪圆, 相切圆

在 Wolfram|Alpha 中探索

参考文献

Bottema, O. "The Malfatti Problem." Forum Geom. 1, 43-50, 2001. http://forumgeom.fau.edu/FG2001volume1/FG200107index.html.Casey, J. A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp. 154-155, 1888.Dörrie, H. "Malfatti's Problem." §30 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 147-151, 1965.Eves, H. A Survey of Geometry, rev. ed. Boston, MA: Allyn & Bacon, p. 245, 1965.F. Gabriel-Marie. Exercices de géométrie. Tours, France: Maison Mame, pp. 710-712, 1912.Forder, H. G. Higher Course Geometry. Cambridge, England: Cambridge University Press, pp. 244-245, 1931.Fukagawa, H. and Pedoe, D. "The Malfatti Problem." Japanese Temple Geometry Problems (San Gaku). Winnipeg: The Charles Babbage Research Centre, pp. 28 and 103-106, 1989.Gardner, M. Fractal Music, Hypercards, and More Mathematical Recreations from Scientific American Magazine. New York: W. H. Freeman, pp. 163-165, 1992.Goldberg, M. "On the Original Malfatti Problem." Math. Mag. 40, 241-247, 1967.Hart. Quart. J. 1, p. 219.Kimberling, C. "1st and 2nd Ajima-Malfatti Points." http://faculty.evansville.edu/ck6/tcenters/recent/ajmalf.html.Malfatti, G. "Memoria sopra un problema stereotomico." Memorie di matematica e fisica della Societé Italiana delle Scienze 10-1, 235-244, 1803.Martin, G. E. Geometric Constructions. New York: Springer-Verlag, pp. 92-95, 1998.Lob, H. and Richmond, H. W. "On the Solution of Malfatti's Problem for a Triangle." Proc. London Math. Soc. 2, 287-304, 1930.Ogilvy, C. S. Excursions in Geometry. New York: Dover, 1990.Oswald. Klassiker de exakten Wissenschaften, Vol. 23. Suppl.Rouché, E. and de Comberousse, C. Traité de géométrie plane. Paris: Gauthier-Villars, pp. 311-314, 1900.Rothman, T. "Japanese Temple Geometry." Sci. Amer. 278, 85-91, May 1998.Schellbach. J. reine angew. Math. 45.Stevanović, M. R. "Triangle Centers Associated with the Malfatti Circles." Forum Geom. 3, 83-93, 2003.van IJzeren, J. "De raakcirkels van Malfatti." Nieuw Tijdschr. Wisk. 65, 269-271, 1977-1978.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, 1991.Woods, F. S. Higher Geometry: An Introduction to Advanced Methods in Analytic Geometry. New York: Dover, pp. 206-209, 1961.

在 Wolfram|Alpha 中被引用

马尔法蒂圆

请引用为

Weisstein, Eric W. "马尔法蒂圆。" 出自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/MalfattiCircles.html

学科分类