反余切是多值函数 (Zwillinger 1995, p. 465),也表示为 (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 311; Jeffrey 2000, p. 124) 或 (Spanier and Oldham 1987, p. 333; Gradshteyn and Ryzhik 2000, p. 208; Jeffrey 2000, p. 127),它是余切的反函数。变体 (例如,Beyer 1987, p. 141; Bronshtein and Semendyayev, 1997, p. 70) 和 有时用于指代反余切的显式主值,尽管这种区分并不总是被做出 (例如,Zwillinger 1995, p. 466)。更糟糕的是,符号 有时用于主值,而 用于多值函数 (Abramowitz and Stegun 1972, p. 80)。请注意,在符号 (在北美和全球袖珍计算器中常用) 中, 是余切,而上标 表示反函数,不是乘法逆元。
另一种不同但常见的约定 (例如,Zwillinger 1995, p. 466; Bronshtein and Semendyayev, 1997, p. 70; Jeffrey 2000, p. 125) 将 的范围定义为 ,从而给出一个在实数线 上连续的函数。在检查涉及反三角函数的恒等式时,应格外小心,因为它们的适用范围或精确形式可能因所使用的约定而异。
Abramowitz, M. and Stegun, I. A. (Eds.). "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.Bennett, A. A. "The Four Term Diophantine Arccotangent Relation." Ann. Math.27, 21-24, 1926.Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143, 1987.Bronshtein, I. N. and Semendyayev, K. A. Handbook of Mathematics, 3rd ed. New York: Springer-Verlag, p. 70, 1997.Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag.61, 67-98, 1988a.Castellanos, D. "The Ubiquitous Pi. Part II." Math. Mag.61, 148-163, 1988b.Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 311, 1998.Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 124-128, 2000.Lehmer, D. H. "A Cotangent Analogue of Continued Fractions." Duke Math. J.4, 323-340, 1938a.Lehmer, D. H. "On Arccotangent Relations for ." Amer. Math. Monthly45, 657-664, 1938b.Sloane, N. J. A. Sequences A005408/M2400 and A091007 in "The On-Line Encyclopedia of Integer Sequences."Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.Wetherfield, M. "The Enhancement of Machin's Formula by Todd's Process." Math. Gaz.80, 333-344, 1996.Zwillinger, D. (Ed.). "Inverse Circular Functions." §6.3 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 465-467, 1995.