另请参阅
16-胞,
24-胞,
120-胞,
600-胞,
交叉多胞形,
面,
Facet,
超立方体,
关联矩阵,
线段,
五胞体,
点,
四维多胞形,
多边形,
多面体,
多面体顶点,
多胞形棱,
多胞形星形化,
本原多胞形,
脊,
单纯形,
超正方体,
均匀四维多胞形 在 MathWorld 课堂中探索此主题
使用 Wolfram|Alpha 探索
参考文献
Bisztriczky, T.; McMullen, P., Schneider, R.; and Weiss, A. W. (Eds.). Polytopes: Abstract, Convex, and Computational. Dordrecht, Netherlands: Kluwer, 1994.Coxeter, H. S. M. "Regular and Semi-Regular Polytopes I." Math. Z. 46, 380-407, 1940.Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New York: Wiley, 1969.Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, p. 45, 1973.Emmer, M. (Ed.). The Visual Mind: Art and Mathematics. Cambridge, MA: MIT Press, 1993.Eppstein, D. "Polyhedra and Polytopes." http://www.ics.uci.edu/~eppstein/junkyard/polytope.html.Fukuda, K. "Polytope Movie Page." http://www.ifor.math.ethz.ch/~fukuda/polymovie/polymovie.html.MacHale, D. George Boole: His Life and Work. Dublin, Ireland: Boole, 1985.Munkres, J. R. Analysis on Manifolds. Reading, MA: Addison-Wesley, 1991.Sullivan, J. "Generating and Rendering Four-Dimensional Polytopes." Mathematica J. 1, 76-85, 1991.Weisstein, E. W. "Books about Polyhedra." http://www.ericweisstein.com/encyclopedias/books/Polyhedra.html.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, 1991.在 Wolfram|Alpha 中被引用
多胞形
请引用为
Weisstein, Eric W. "Polytope." 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/Polytope.html
学科分类