Barber, C. B.; Dobkin, D. P.; and Huhdanpaa, H. T. "The Quickhull Algorithm for Convex Hulls." ACM Trans. Mathematical Software22, 469-483, 1996.Chan, T. "Optimal Output-sensitive Convex Hull Algorithms in Two and Three Dimensions." Disc. Comput. Geom.16, 361-368, 1996. http://www.cs.uwaterloo.ca/~tmchan/pub.html#conv23d.Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, p. 8, 1991.de Berg, M.; van Kreveld, M.; Overmans, M.; and Schwarzkopf, O. "Convex Hulls: Mixing Things." Ch. 11 in Computational Geometry: Algorithms and Applications, 2nd rev. ed. Berlin: Springer-Verlag, pp. 235-250, 2000.Edelsbrunner, H. and Mücke, E. P. "Three-Dimensional Alpha Shapes." ACM Trans. Graphics13, 43-72, 1994.The Geometry Center. "Qhull." http://www.qhull.org/. Meeussen, W. L. J. and Weisstein, E. W. "Convex Hull." Mathematica package ConvexHull.m.O'Rourke, J. Computational Geometry in C, 2nd ed. Cambridge, England: Cambridge University Press, 1998.Preparata, F. R. and Shamos, M. I. Computational Geometry: An Introduction. New York: Springer-Verlag, 1985.Santaló, L. A. Integral Geometry and Geometric Probability. Reading, MA: Addison-Wesley, 1976.Seidel, R. "Convex Hull Computations." Ch. 19 in Handbook of Discrete and Computational Geometry (Ed. J. E. Goodman and J. O'Rourke). Boca Raton, FL: CRC Press, pp. 361-375, 1997.Skiena, S. S. "Convex Hull." §8.6.2 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 351-354, 1997.Wenninger, M. J. Dual Models. Cambridge, England: Cambridge University Press, 1983.Yao, A. C.-C. "A Lower Bound to Finding Convex Hulls." J. ACM28, 780-787, 1981.