另请参阅
劈裂中心,
旁心,
旁心三角形,
旁切圆,
弗尔曼圆,
格尔贡点,
米滕点,
内格尔线,
分割线,
三等分周长点
使用 Wolfram|Alpha 探索
参考文献
Altshiller-Court, N. College Geometry: A Second Course in Plane Geometry for Colleges and Normal Schools, 2nd ed., rev. enl. New York: Barnes and Noble, pp. 160-164, 1952.Bennett, G.; Glenn, J.; Kimberling, C.; and Cohen, J. M. "Problem E 3155 and Solution." Amer. Math. Monthly 95, 874, 1988.Chen, J.; Lo, C.-H.; and Lossers, O. P. "Problem E 3397 and Solution." Amer. Math. Monthly 99, 70-71, 1992.Coolidge, J. L. A Treatise on the Geometry of the Circle and Sphere. New York: Chelsea, p. 53, 1971.Eves, H. W. A Survey of Geometry, rev. ed. Boston, MA: Allyn and Bacon, p. 83, 1972.Gallatly, W. "The Nagel Point." §30 in The Modern Geometry of the Triangle, 2nd ed. London: Hodgson, p. 20, 1913.Honsberger, R. "The Nagel Point and the Spieker Circle." §1.4 in Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 5-13, 1995.Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, pp. 184 and 225-226, 1929.Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle." Math. Mag. 67, 163-187, 1994.Kimberling, C. "Nagel Point." http://faculty.evansville.edu/ck6/tcenters/class/nagel.html.Kimberling, C. "Encyclopedia of Triangle Centers: X(8)=Nagel Point." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X8.Nagel, C. H. Untersuchungen über die wichtigsten zum Dreiecke gehöhrigen Kreise. Eine Abhandlung aus dem Gebiete der reinen Geometrie. Leipzig, Germany, 1836.在 Wolfram|Alpha 中被引用
内格尔点
请引用为
Weisstein, Eric W. "Nagel Point." 来自 MathWorld—— Wolfram Web 资源。 https://mathworld.net.cn/NagelPoint.html
主题分类