Aldersey-Williams, H. The Most Beautiful Molecule. New York: Wiley, 1997.Chung, F. and Sternberg, S. "Mathematics and the Buckyball." Amer. Sci.81, 56-71, 1993.Conway, J. H.; Radin, C.; and Sadun, L. "On Angles Whose Squared Trigonometric Functions Are Rational." Discr. Computat. Geom.22, 321-332, 1999.Coxeter, H. S. M.; Longuet-Higgins, M. S.; and Miller, J. C. P. "Uniform Polyhedra." Phil. Trans. Roy. Soc. London Ser. A246, 401-450, 1954.Cundy, H. and Rollett, A. "Truncated Icosahedron. ." §3.7.10 in Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., p. 110, 1989.Geometry Technologies. "Truncated Icosahedron." http://www.scienceu.com/geometry/facts/solids/tr_icosa.html.Har'El, Z. "Uniform Solution for Uniform Polyhedra." Geometriae Dedicata47, 57-110, 1993.Kabai, S. Mathematical Graphics I: Lessons in Computer Graphics Using Mathematica. Püspökladány, Hungary: Uniconstant, p. 131, 2002.Kasahara, K. "Three More Semiregular Polyhedrons Become Possible." Origami Omnibus: Paper-Folding for Everyone. Tokyo: Japan Publications, p. 225, 1988.Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 101, 1998.Maeder, R. E. "25: Truncated Icosahedron." 1997. https://www.mathconsult.ch/static/unipoly/25.html.Rhodes, R. Dark Sun: The Making of the Hydrogen Bomb. Touchstone Books, 1996.Sloane, N. J. A. Sequence A377787 in "The On-Line Encyclopedia of Integer Sequences." Trott, M. "Constructing a Buckyball with Mathematica: A Combination of Geometry and Algebra from Classical and Modern Mathematics." http://library.wolfram.com/infocenter/Demos/106/.Trott, M. "Bending a Soccer Ball." http://www.mathematicaguidebooks.org/soccer/.Wenninger, M. J. "The Truncated Icosahedron." Model 9 in Polyhedron Models. Cambridge, England: Cambridge University Press, p. 23, 1989.