等边带面体是一种带面体,其构成星形的线段长度相等 (Coxeter 1973, p. 29)。图版 II(Coxeter 1973 年第 32 页之后)展示了一些等边带面体。等边带面体可以被视为
维超立方体的三维投影 (Ball and Coxeter 1987)。
棱柱是带面体,也可能是等边的。下表总结了一些等边带面体及其基向量。可以看出,一个柏拉图立体(立方体),三个阿基米德立体(大斜方二十-十二面体、大斜方截半立方八面体和截角八面体),以及两个阿基米德对偶体(菱形十二面体和菱形三十面体)是等边带面体 (Ball and Coxeter 1987, Towle 1996)。
正带面体具有由平行四边形组成的带,这些带形成赤道,并被称为“带”。
另请参阅
立方体,
九十面体,
大菱形三十面体,
大斜方截半立方八面体,
超立方体,
平行四边形,
极坐标带面体,
菱形十二面体,
菱形二十面体,
菱面体,
菱形,
带面体,
Zonotope
使用 探索
参考文献
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 141-144, 1987.Coxeter, H. S. M. "Zonohedra." §2.8 in Regular Polytopes, 3rd ed. New York: Dover, pp. 27-30, 1973.Coxeter, H. S. M. Ch. 4 in The Beauty of Geometry: Twelve Essays. New York: Dover, 1999.Eppstein, D. "Zonohedra and Zonotopes." http://www.ics.uci.edu/~eppstein/junkyard/zono/.Eppstein, D. "Ukrainian Easter Egg." http://www.ics.uci.edu/~eppstein/junkyard/ukraine/.Fedorov, E. S. "The Symmetry of Regular Systems of Figures." Zap. Mineralog. Obsc. (2) 28, 1-146, 1891. Reprinted as Symmetry of Crystals. American Crystallographic Assoc., 1971.Fedorov, E. S. "Elements of the Study of Figures." Zap. Mineralog. Obsc. (2) 21, 1-279, 1885. Reprinted Moscow: Izdat. Akad. Nauk SSSR, 1953. http://www.research.att.com/~njas/doc/fedorov.ps.Fedorov, E. S. "Elements of the Theory of Figures." Imp. Acad. Sci., St. Petersburg 1885. Reprinted Moscow: Izdat. Akad. Nauk SSSR, 1953.Fedorov, E. S. Zeitschr. Krystallographie und Mineralogie 21, 689, 1893.Hart, G. "Zonohedra." http://www.georgehart.com/virtual-polyhedra/zonohedra-info.html.Harp, G. W. "Zonohedrification." Mathematica J. 7, 374-383, 1999.Kelly, L. M. and Moser, W. O. J. "On the Number of Ordinary Lines Determined by
Points." Canad. J. Math. 1, 210-219, 1958.Towle, R. "Zonohedra." http://personal.neworld.net/~rtowle/Zonohedra/zonohedra.html.Towle, R. "Graphics Gallery: Polar Zonohedra." Mathematica J. 6, 8-12, 1996. http://library.wolfram.com/infocenter/Articles/3335/.在 上被引用
等边带面体
请引用为
Weisstein, Eric W. "Equilateral Zonohedron." 来自 -- 资源. https://mathworld.net.cn/EquilateralZonohedron.html
主题分类