主题
Search

递推方程


递推方程(也称为差分方程)是微分方程的离散 аналог。差分方程涉及整数函数 f(n),形式如下:

 f(n)-f(n-1)=g(n),
(1)

其中 g 是某个整数函数。上述方程是一阶常微分方程的离散 аналог:

 f^'(x)=g(x).
(2)

差分方程的例子经常出现在动力系统中。例子包括曼德勃罗集朱利亚集定义中涉及的迭代:

 f(n+1)=f(n)^2+c,
(3)

其中 c 是一个常数,以及逻辑斯蒂方程

 f(n+1)=rf(n)[1-f(n)],
(4)

其中 r 是一个常数。也许最著名的递推关系例子是定义斐波那契数的那个:

 F_n=F_(n-2)+F_(n-1)
(5)

对于 n>=3F_1=F_2=1

递推方程可以使用以下方法求解:RSolve[eqn, a[n], n]。线性递推方程的解可以直接计算,但二次递推方程则不太容易理解。

由递推关系生成的序列称为递推序列。

 s(X)=product_(i=1)^m(1-alpha_iX)^(n_i)=1-s_1X-...-s_nX^n,
(6)

其中广义a(h) 对于 h=0, 1, ... 由下式给出:

 a(h)=sum_(i=1)^mA_i(h)alpha_i^h,
(7)

具有不同的非零alpha_i系数 A_i(h)多项式,次数为 n_i-1,对于正整数 n_i,且 i in [1,m]。那么序列 {a_h},其中 a_h=a(h) 满足递推关系

 a_(h+n)=s_1a_(h+n-1)+...+s_na_h
(8)

(Myerson 和 van der Poorten 1995)。

一般递推序列中的项属于在整数上的有限生成,因此每个有理数都不可能出现在任何有限生成的递推序列中。如果一个递推序列无限次消失,那么它会在算术级数上消失,其公差为 1,仅取决于根。递推序列可以无限次取值的数量受到某个整数 l 的限制,该整数仅取决于根。不存在每个整数都无限次出现的递推序列,也不存在每个高斯整数都出现的递推序列(Myerson 和 van der Poorten 1995)。

mu(n) 是一个界限,使得阶数为 n 的非退化整数递推序列至少取值零 mu(n) 次。那么 mu(2)=1mu(3)=6,且 mu(4)>=9(Myerson 和 van der Poorten 1995)。mu(3) 的最大情况是:

 a_(n+3)=2a_(n+2)-4a_(n+1)+4a_n
(9)

其中

 a_0=a_1=0
(10)
 a_2=1.
(11)

零点是

 a_0=a_1=a_4=a_6=a_(13)=a_(52)=0
(12)

(Beukers 1991)。


另请参阅

自变量加法关系, 自变量乘法关系, 比内形式, 比内斐波那契数公式, 克伦肖递推公式, 差分-微分方程, 快速斐波那契变换, 斐波那契数, 有限差分, 指标方程, 线性递推方程, 卢卡斯序列, 常微分方程, 二次递推方程, 商差表, 反射关系, 平移关系, Skolem-Mahler-Lech 定理

使用 Wolfram|Alpha 探索

参考文献

Abramov, S. A. "Rational Solutions of Linear Differential and Difference Equations with Polynomial Coefficients." USSR Comput. Meths. Math. Phys. 29, 7-12, 1989.Abramov, S. A. "Rational Solutions of Linear Difference and q-Difference Equations with Polynomial Coefficients." Proc. ISSAC' 95, 285-289, 1995.Abramov, S. A.; Bronstein, M.; and Petkovšek, M. "On Polynomial Solutions of Linear Operator Equations." Proc. ISSAC' 95, 290-296, 1995.Agarwal, R. P. Difference Equations and Inequality: Theory, Methods, and Applications, 2nd ed., rev. exp. New York: Dekker, 2000.Batchelder, P. M. An Introduction to Linear Difference Equations. New York: Dover, 1967.Bellman, R. E. and Cooke, K. L. Differential-Difference Equations. New York: Academic Press, 1963.Beukers, F. "The Zero-Multiplicity of Ternary Recurrences." Composito Math. 77, 165-177, 1991.Beyer, W. H. "Finite Differences." CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 429-460, 1988.Birkhoff, G. D. "General Theory of Linear Difference Equations." Trans. Amer. Math. Soc. 12, 243-284, 1911.Brand, L. Differential and Difference Equations. New York: Wiley, 1966.Fulford, G.; Forrester, P.; and Jones, A. Modelling with Differential and Difference Equations. New York: Cambridge University Press, 1997.Goldberg, S. Introduction to Difference Equations, with Illustrative Examples from Economics, Psychology, and Sociology. New York: Dover, 1986.Greene, D. H. and Knuth, D. E. Mathematics for the Analysis of Algorithms, 3rd ed. Boston, MA: Birkhäuser, 1990.Levy, H. and Lessman, F. Finite Difference Equations. New York: Dover, 1992.Myerson, G. and van der Poorten, A. J. "Some Problems Concerning Recurrence Sequences." Amer. Math. Monthly 102, 698-705, 1995.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Recurrence Relations and Clenshaw's Recurrence Formula." §5.5 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 172-178, 1992.Richtmyer, R. D. and Morton, K. W. Difference Methods for Initial-Value Problems, 2nd ed. New York: Interscience Publishers, 1967.Riordan, J. An Introduction to Combinatorial Analysis. New York: Wiley, 1980.Sloane, N. J. A. and Plouffe, S. "Recurrences and Generating Functions" and "Other Methods for Hand Analysis." §2.4 and 2.6 in The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, pp. 9-10 and 13-18, 1995.van Hoeij, M. Rational Solutions of Linear Difference Equations." Proc. ISSAC' 98, 120-123, 1998.Weisstein, E. W. "Books about Difference Equations." http://www.ericweisstein.com/encyclopedias/books/DifferenceEquations.html.Wimp, J. Computations with Recurrence Relations. Boston, MA: Pitman, 1984.Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 128-131, 2002.

在 Wolfram|Alpha 上引用

递推方程

请引用本文为

Weisstein, Eric W. "递推方程。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/RecurrenceEquation.html

学科分类