Bouwer, Z. "Vertex and Edge Transitive, But Not 1-Transitive Graphs." Canad. Math. Bull.13, 231-237, 1970.Chao, C.-Y. "On the Classification of Symmetric Graphs with a Prime Number of Vertices." Trans. Amer. Math. Soc.158, 247-256, 1971.Cheng, Y. and Oxley, J. "On Weakly Symmetric Graphs of Order Twice a Prime." J. Combin. Th. Ser. B42, 196-211, 1987.Doyle, P. G. On Transitive Graphs. Senior Thesis. Cambridge, MA, Harvard College, April 1976.Doyle, P. "A 27-Vertex Graph That Is Vertex-Transitive and Edge-Transitive But Not L-Transitive." October 1998. http://hilbert.dartmouth.edu/~doyle/docs/bouwer/bouwer/bouwer.html.Godsil, C. and Royle, G. Algebraic Graph Theory. New York: Springer-Verlag, 2001.Harary, F. "Symmetric Graphs" and "Highly Symmetric Graphs." Graph Theory. Reading, MA: Addison-Wesley, pp. 171-175, 1994.Holt, D. F. "A Graph Which Is Edge Transitive But Not Arc Transitive." J. Graph Th.5, 201-204, 1981.Holton, D. A. and Sheehan, J. The Petersen Graph. Cambridge, England: Cambridge University Press, 1993.Praeger, C.; Wang, R. J.; and Xu, M. Y. "Symmetric Graphs of Order a Product of Two Distinct Primes." J. Combin. Th. Ser. B58, 299-318, 1993.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.Sloane, N. J. A. Sequence A087145 in "The On-Line Encyclopedia of Integer Sequences."Tutte, W. T. Connectivity in Graphs. Toronto, CA: University of Toronto Press, 1966.Wang, R. J. and Xu, M. Y. "A Classification of Symmetric Graphs of Order ." J. Combin. Th. Ser. B58, 197-216, 1993.