顶点传递图,有时也称为节点对称图 (Chiang and Chen 1995),是一个图,其任意一对顶点在它的自同构群的某个元素下是等价的。更明确地说,顶点传递图是其自同构群是传递的图 (Holton and Sheehan 1993, p. 27)。通俗地说,如果每个顶点的局部环境相同,使得任何顶点都无法根据其周围的顶点和边与其他顶点区分开来,则该图是顶点传递的。
Bermond, J.-C. "Hamiltonian Graphs." Ch. 6 in Selected Topics in Graph Theory (Ed. L. W. Beineke and R. J. Wilson). London: Academic Press, pp. 127-167, 1979.Chiang, W.-K. and Chen, R.-J. "The -Star Graph: A Generalized Star Graph." Information Proc. Lett.56, 259-264, 1995.Colbourn, C. J. and Dinitz, J. H. (Eds.). CRC Handbook of Combinatorial Designs. Boca Raton, FL: CRC Press, p. 649, 1996.Godsil, C. and Royle, G. "Hamilton Paths and Cycles." C§3.6 in Algebraic Graph Theory. New York: Springer-Verlag, pp. 45-47, 2001.Gould, R. J. "Updating the Hamiltonian Problem--A Survey." J. Graph Th.15, 121-157, 1991.Holton, D. A. and Sheehan, J. The Petersen Graph. Cambridge, England: Cambridge University Press, 1993.Lauri, J. and Scapellato, R. Topics in Graph Automorphisms and Reconstruction. Cambridge, England: Cambridge University Press, 2003.Lovász, L. Problem 11 in "Combinatorial Structures and Their Applications." In Proc. Calgary Internat. Conf. Calgary, Alberta, 1969. London: Gordon and Breach, pp. 243-246, 1970.McKay, B. D. and Praeger, C. E. "Vertex-Transitive Graphs Which Are Not Cayley Graphs. I." J. Austral. Math. Soc. Ser. A56, 53-63, 1994.McKay, B. D. and Royle, G. F. "The Transitive Graphs with at Most 26 Vertices." Ars Combin.30, 161-176, 1990.Mütze, T. "On Hamilton Cycles in Graphs Defined by Intersecting Set Systems." Not. Amer. Soc.74, 583-592, 2024.Royle, G. "Cubic Symmetric Graphs (The Foster Census): Hamiltonian Cycles." http://school.maths.uwa.edu.au/~gordon/remote/foster/#hamilton.Royle, G. "Transitive Graphs." http://school.maths.uwa.edu.au/~gordon/trans/.Sloane, N. J. A. Sequences A006799/M0302 and A006800/M0345 in "The On-Line Encyclopedia of Integer Sequences."Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.