莱莫恩轴是透射轴线,为一个参考三角形及其切线三角形的透射轴线,同时也是垂心共轭点
的三线极线,其中
为参考三角形的垂心共轭点。它也是
关于外接圆的极线,并且垂直于布罗卡轴。
阿波罗尼斯圆的圆心共线于莱莫恩轴上。这条线垂直于布罗卡轴
,并且是外接圆和布罗卡圆的根轴。
它是中心线
(Kimberling 1998, p. 150) 并且具有三线方程
(Oldknow 1996)。它穿过 Kimberling 中心
,对于
(Schoute 中心), 237, 351 (Parry 圆的中心), 512, 647, 649, 663, 665, 667, 669, 887, 890, 902, 1055, 1495, 1960, 2223, 2488, 2502, 2509, 2978, 3005, 3009, 3010, 和 3016。
莱莫恩轴是共轴系(布罗卡圆,外接圆,卢卡斯圆根轴圆,卢卡斯内圆)的根轴,该共轴系包括外接圆和布罗卡圆作为特例 (Casey 1888, p. 177; Kimberling 1998, p. 150)。
另请参阅
阿波罗尼斯圆,
布罗卡轴,
外接圆,
共线,
第一莱莫恩圆,
垂心共轭点,
极线,
根轴,
垂心共轭线,
切线三角形,
三角形重心,
三线极线
使用 探索
参考文献
Casey, J. 欧几里得《几何原本》前六卷的续篇,包含现代几何的简易介绍及大量例题,第 5 版,修订版。 Dublin: Hodges, Figgis, & Co., 1888.Gallatly, W. "莱莫恩轴。" §128 in 现代三角形几何,第 2 版。 London: Hodgson, p. 92, 1913.Johnson, R. A. 现代几何学:三角形和圆的几何学基础教程。 Boston, MA: Houghton Mifflin, p. 295, 1929.Kimberling, C. "三角形中心和中心三角形。" Congr. Numer. 129, 1-295, 1998.Oldknow, A. "三角形的欧拉-格尔贡-索迪三角形。" Amer. Math. Monthly 103, 319-329, 1996.在 中被引用
莱莫恩轴
引用为
Weisstein, Eric W. "莱莫恩轴。" 来自 —— 资源。 https://mathworld.net.cn/LemoineAxis.html
主题分类