主题
Search

拉东变换


拉东变换是一种积分变换,其逆变换用于从医学 CT 扫描重建图像。还设计了一种使用拉东变换,利用极地轨道上的航天器重建行星极地区域地图的技术 (Roulston and Muhleman 1997)。

拉东变换和逆拉东变换在 Wolfram 语言 中实现为RadonTransformInverseRadonTransform,分别。

拉东变换可以定义为

R(p,tau)[f(x,y)]=int_(-infty)^inftyf(x,tau+px)dx
(1)
=int_(-infty)^inftyint_(-infty)^inftyf(x,y)delta[y-(tau+px)]dydx
(2)
=U(p,tau),
(3)

其中 p 是一条直线的斜率tau 是其截距,且 delta(x)delta 函数。逆拉东变换是

 f(x,y)=1/(2pi)int_(-infty)^inftyd/(dy)H[U(p,y-px)]dp,
(4)

其中 H希尔伯特变换。该变换也可以定义为

 R^'(r,alpha)[f(x,y)]=int_(-infty)^inftyint_(-infty)^inftyf(x,y)delta(r-xcosalpha-ysinalpha)dxdy,
(5)

其中 r 是从直线到原点的垂直距离,而 alpha 是距离向量形成的角度

使用恒等式

 F_(omega,alpha)[R[f(omega,alpha)]](x,y)=F_(u,v)^2[f(u,v)](x,y),
(6)

其中 F傅里叶变换,得到反演公式

 f(x,y)=cint_0^piint_(-infty)^inftyF_(omega,alpha)[R[f(omega,alpha)]]|omega|e^(iomega(xcosalpha+ysinalpha))domegadalpha.
(7)

傅里叶变换可以通过写入来消除

 f(x,y)=int_0^piint_(-infty)^inftyR[f(r,alpha)]W(r,alpha,x,y)drdalpha,
(8)

其中 W 是一个加权函数,例如

W(r,alpha,x,y)=h(xcosalpha+ysinalpha-r)
(9)
=F^(-1)[|omega|].
(10)

Nievergelt (1986) 使用逆公式

 f(x,y)=1/pilim_(c->0)int_0^piint_(-infty)^inftyR[f(r+xcosalpha+ysinalpha,alpha)]G_c(r)drdalpha,
(11)

其中

 G_c(r)={1/(pic^2)   for |r|<=c; 1/(pic^2)(1-1/(sqrt(1-c^2/r^2)))   for |r|>c.
(12)

路德维格反演公式用拉东变换表示一个函数。R^'(r,alpha)R(p,tau) 通过下式关联

p=cotalpha    tau=rcscalpha
(13)
r=tau/(1+p^2)    alpha=cot^(-1)p.
(14)

拉东变换满足叠加性

 R(p,tau)[f_1(x,y)+f_2(x,y)]=U_1(p,tau)+U_2(p,tau),
(15)

线性

 R(p,tau)[af(x,y)]=aU(p,tau),
(16)

缩放

 R(p,tau)[f(x/a,y/b)]=|a|U(pa/b,tau/b),
(17)

旋转,其中 R_phi 表示 旋转 角度 phi

 R(p,tau)[R_phif(x,y)]=1/(|cosphi+psinphi|)U((p-tanphi)/(1+ptanphi),tau/(cosphi+psinphi)),
(18)

和倾斜

 R(p,tau)[f(ax+by,cx+dy)]=1/(|a+bp|)U[(c+dp)/(a+bp),(tau(ab+bc))/(a+bp)]
(19)

(Durrani and Bisset 1984; correction in Durrani and Bisset 1985)。

沿 p,tau 的线积分是

 I=sqrt(1+p^2)U(p,tau).
(20)

一维卷积定理的类似物是

 R(p,tau)[f(x,y)*g(y)]=U(p,tau)*g(tau),
(21)

普朗歇尔定理的类似物是

 int_(-infty)^inftyU(p,tau)dtau=int_(-infty)^inftyint_(-infty)^inftyf(x,y)dxdy,
(22)

帕塞瓦尔定理的类似物是

 int_(-infty)^inftyR(p,tau)[f(x,y)]^2dtau=int_(-infty)^inftyint_(-infty)^inftyf^2(x,y)dxdy.
(23)

如果 fC 上的连续函数,关于平面勒贝格测度可积,并且

 int_lfds=0
(24)

对于每条(双重)无限线 l,其中 s 是长度测度,则 f 必须恒等于零。但是,如果移除全局可积性条件,则此结果将失效 (Zalcman 1982, Goldstein 1993)。


另请参阅

哈默的 X 射线问题逆拉东变换拉东变换——圆柱拉东变换——狄拉克δ函数拉东变换——高斯函数拉东变换——正方形断层扫描

使用 Wolfram|Alpha 探索

参考文献

Anger, B. and Portenier, C. Radon Integrals. Boston, MA: Birkhäuser, 1992.Armitage, D. H. and Goldstein, M. "Nonuniqueness for the Radon Transform." Proc. Amer. Math. Soc. 117, 175-178, 1993.Deans, S. R. The Radon Transform and Some of Its Applications. New York: Wiley, 1983.Durrani, T. S. and Bisset, D. "The Radon Transform and its Properties." Geophys. 49, 1180-1187, 1984.Durrani, T. S. and Bisset, D. "Erratum to: The Radon Transform and Its Properties." Geophys. 50, 884-886, 1985.Esser, P. D. (Ed.). Emission Computed Tomography: Current Trends. New York: Society of Nuclear Medicine, 1983.Gindikin, S. (Ed.). Applied Problems of Radon Transform. Providence, RI: Amer. Math. Soc., 1994.Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, 1980.Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.Helgason, S. The Radon Transform. Boston, MA: Birkhäuser, 1980.Hungerbühler, N. "Singular Filters for the Radon Backprojection." J. Appl. Analysis 5, 17-33, 1998.Kak, A. C. and Slaney, M. Principles of Computerized Tomographic Imaging. IEEE Press, 1988.Kunyansky, L. A. "Generalized and Attenuated Radon Transforms: Restorative Approach to the Numerical Inversion." Inverse Problems 8, 809-819, 1992.Nievergelt, Y. "Elementary Inversion of Radon's Transform." SIAM Rev. 28, 79-84, 1986.Rann, A. G. and Katsevich, A. I. The Radon Transform and Local Tomography. Boca Raton, FL: CRC Press, 1996.Robinson, E. A. "Spectral Approach to Geophysical Inversion Problems by Lorentz, Fourier, and Radon Transforms." Proc. Inst. Electr. Electron. Eng. 70, 1039-1053, 1982.Roulston, M. S. and Muhleman, D. O. "Synthesizing Radar Maps of Polar Regions with a Doppler-Only Method." Appl. Opt. 36, 3912-3919, 1997.Shepp, L. A. and Kruskal, J. B. "Computerized Tomography: The New Medical X-Ray Technology." Amer. Math. Monthly 85, 420-439, 1978.Strichartz, R. S. "Radon Inversion--Variation on a Theme." Amer. Math. Monthly 89, 377-384 and 420-423, 1982.Weisstein, E. W. "Books about Radon Transforms." http://www.ericweisstein.com/encyclopedias/books/RadonTransforms.html.Zalcman, L. "Uniqueness and Nonuniqueness for the Radon Transform." Bull. London Math. Soc. 14, 241-245, 1982.

在 Wolfram|Alpha 上被引用

拉东变换

请引用为

Weisstein, Eric W. “拉东变换。” 来自 MathWorld—— Wolfram Web 资源。 https://mathworld.net.cn/RadonTransform.html

主题分类