主题
Search

拉东变换--正方形


RadonSquare
 R(p,tau)=int_(-infty)^inftyint_(-infty)^inftyf(x,y)delta[y-(tau+px)]dydx,
(1)

其中

 f(x,y)={1   for x,y in [-a,a]; 0   otherwise
(2)

 delta(x)=1/(2pi)int_(-infty)^inftye^(-ikx)
(3)

delta 函数

R(p,tau)=1/(2pi)int_(-a)^aint_(-a)^aint_(-infty)^inftye^(-ik[y-(tau+px)])dkdydx
(4)
=1/(2pi)int_(-infty)^inftye^(iktau)[int_(-a)^ae^(-ky)dyint_(-a)^ae^(ikpx)dx]dk
(5)
=1/(2pi)e^(iktau)1/(-ik)[e^(-iky)]_(-a)^a1/(ikp)[e^(ikpx)]_(-a)^adk
(6)
=1/(2pi)int_(-infty)^inftye^(iktau)1/(k^2p)[-2isin(ka)][2isin(kpa)]dk
(7)
=2/(pip)int_(-infty)^infty(sin(ka)sin(kpa)e^(iktau))/(k^2)dk
(8)
=4/(pip)int_0^infty(sin(ka)sin(kpa)cos(ktau))/(k^2)dk
(9)
=2/(pip)int_0^infty(sin[k(tau+a)]-sin[k(tau-a)])/(k^2)sin(kpa)dk
(10)
=2/(pip){int_0^infty(sin[k(tau+a)]sin(kpa))/(k^2)dk-int_0^infty(sin[k(tau-a)]sin(kpa))/(k^2)dk}.
(11)

来自 Gradshteyn 和 Ryzhik (2000, 方程 3.741.3),

 int_0^infty(sin(ax)sin(bx))/(x^2)dx=1/2pisgn(ab)min(|a|,|b|),
(12)

因此

 R(p,tau)=1/p{sgn[(tau+a)pa]min(|tau+a|,|pa|)-sgn[(tau-a)pa]min(|tau-a|,|pa|)}.
(13)

这也可以显式地写成形式

 R(p,tau)=(|a+ap-tau|+|a+ap+tau|-|a-ap-tau|-|a-ap+tau|)/(2p).
(14)

另请参阅

拉东变换, 拉东变换--圆柱, 拉东变换--Delta 函数, 拉东变换--高斯

使用 Wolfram|Alpha 探索

参考文献

Gradshteyn, I. S. 和 Ryzhik, I. M. 积分表、级数和乘积表,第 6 版。 圣地亚哥, CA: 学术出版社, 2000年。

引用为

Weisstein, Eric W. "拉东变换--正方形。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/RadonTransformSquare.html

主题分类