如果一个结不能分解为连通和,除非其中一个因子是平凡结,则称该结为素数结 (Livingston 1993, pp. 5 and 78)。不是素数结的结称为合成结。通常可以将两个素数结组合成两个不同的合成结,具体取决于两者的定向。Schubert (1949) 证明了每个结都可以唯一分解(直到分解执行的顺序)为素数结的结和。
一般来说,确定给定的结是素数结还是合成结并非易事 (Hoste et al. 1998)。然而,对于交错结,Menasco (1984) 证明了既约交错图表示一个素数结当且仅当该图本身是素图(“交错结是素数结当且仅当它看起来是素图”;Hoste et al. 1998)。
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 8-9, 1994.Burde, G. and Zieschang, H. Knots, 2nd rev. ed. Berlin: de Gruyter, 2002.Ernst, C. and Sumners, D. W. "The Growth of the Number of Prime Knots." Math. Proc. Cambridge Philos. Soc.102, 303-315, 1987.Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First Knots." Math. Intell.20, 33-48, Fall 1998.Jones, V. F. R. "Hecke Algebra Representations of Braid Groups and Link Polynomials." Ann. Math.126, 335-388, 1987.Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., pp. 9 and 78, 1993.Menasco, W. "Closed Incompressible Surfaces in Alternating Knot and Link Complements." Topology23, 37-44, 1984.Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, p. 335, 1976.Schubert, H. Sitzungsber. Heidelberger Akad. Wiss., Math.-Naturwiss. Klasse, 3rd Abhandlung. 1949.Sloane, N. J. A. Sequence A002863/M0851 in "The On-Line Encyclopedia of Integer Sequences."Sloane, N. J. A. and Plouffe, S. Figure M0851 in The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.Thistlethwaite, M. "On the Structure and Scarcity of Alternating Links and Tangles." J. Knot Th. Ramifications7, 981-1004, 1998.Welsh, D. J. A. "On the Number of Knots and Links." Colloq. Math. Soc. J. Bolyai60, 713-718, 1991.