主题
Search

康威结


康威结是 素数结,具有 11 个交叉点,辫字

 sigma_2^3sigma_1sigma_3^(-1)sigma_2^(-2)sigma_1sigma_2^(-1)sigma_1sigma_3^(-1).

康威结的 琼斯多项式

 t^(-4)(-1+2t-2t^2+2t^3+t^6-2t^7+2t^8-2t^9+t^(10)),

这与 木下-寺坂结 的琼斯多项式相同

康威结不是 切片结 (Delbert 2020, Klarreich 2020, Piccirillo 2020)。


参见

木下-寺坂结木下-寺坂突变体

使用 Wolfram|Alpha 探索

参考文献

Conway, J. H. "An Enumeration of Knots and Links." In Computational Problems in Abstract Algebra (Ed. J. Leech). Oxford, England: Pergamon Press, pp. 329-358, 1970.Cromwell, P. Knots and Links. Cambridge, England: Cambridge University Press, pp. 180-181, 2004.Delbert, C. "Young Mathematician Solves Old, Famous Knot Problem in Barely a Week." Popular Mechanics. May 22, 2020. https://www.popularmechanics.com/science/a32635156/conway-knot-problem-solved/.Klarreich, E. "A Grad Student Solved the Epic Conway Knot Problem--in a Week." Quanta. May 19, 2020. https://www.quantamagazine.org/graduate-student-solves-decades-old-conway-knot-problem-20200519/.Montesinos, J. "Surgery on Links and Double Branched Covers of S^3." In Knots, Groups, and 3-Manifolds: Papers dedicated to the memory of R. H. Fox (Ed. L. P. Neuwerth). Princeton, NJ: Princeton University Press, pp. 227-259, 1975.Piccirillo, L. "The Conway Knot Is Not Slice." Ann. Math. 191, 581-591, 2020.Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, p. 173, 1976.

在 Wolfram|Alpha 中被引用

康威结

引用为

Weisstein, Eric W. “康威结。” 来自 MathWorld——Wolfram 网络资源。 https://mathworld.net.cn/ConwaysKnot.html

主题分类