主题
Search

优美图


优美图是可以被优美标记的图。优美图的特例包括效用图 K_(2,3) (Gardner 1983) 和 Petersen 图。不能被优美标记的图称为非优美(或有时称为可耻)图。

优美图可以是连通的或非连通的;例如,单点图 K_1完全图 K_n 的不交并 K_1 union K_n 是优美的,当且仅当 n<=4 (Gallian 2018)。

尽管 Erdős 的一项未发表结果表明大多数图不是优美的 (Graham and Sloane 1980),但大多数具有某种结构规则性的图都是优美的 (Gallian 2018)。

确定哪些图是优美的,这是一个尚未解决且显然非常困难的问题。其困难的原因之一是,优美图的子图不一定是优美的 (Seoud and Wilson 1993)。

为了使图是优美的,它必须没有环或重边。具有 n 个顶点和 m 条边的图也必须满足

 n<=m+1

才能是优美的,因为否则没有足够的整数小于或等于 m 来覆盖所有顶点。Rosa (1967) 还提出了另一个可以用来确定图是否非优美的标准,他证明了欧拉图边数如果与 1 或 2 (模 4)同余,则是非优美的。

UngracefulGraphs

节点数为 n=1, 2, ... 的优美图的数量为 1, 1, 2, 7, 22, 126, ... (OEIS A308548),而相应的连通优美图的数量为 1, 1, 2, 6, 18, 106, ... (OEIS A308549)。节点数为 n=1, 2, ... 的非优美图的数量为 0, 1, 2, 4, 12, 30, 85, ... (OEIS A308556),而相应的连通非优美图的数量为 0, 0, 0, 0, 3, 6, 34, ... (OEIS A308557),其中前几个如上所示。

包含单个基本不同的优美标记(即,模图自同构群并关于减法补运算的唯一标记)的图可以称为唯一优美图,而拥有最大可能数量的基本不同的标记(可能受一些附加条件约束,例如不拥有孤立顶点)的图可以称为最大优美图

优美图的参数化族包括以下各项

1. 香蕉树图

2. 书图 B_(2m)

3. 毛毛虫图

4. 完全图 K_n 当且仅当 n<=4 (Golomb 1974),

5. 完全二部图 K_(m,n) (Golomb 1974),

6. 圈图 C_n 当且仅当 n=0 or 3 (mod 4)

7. 爆竹图

8. 齿轮图

9. 网格图 P_n square P_m

10. 舵轮图

11. 超立方体图 Q_n

12. 梯子图 P_2 square P_n

13. 莫比乌斯梯子 M_n

14. 蒙古包图

15. 锅图

16. 路径图 P_n

17. 柏拉图图 (Gardner 1983, pp. 158 and 163-164),

18. 棱柱图 K_2 square C_n

19. 星图 S_n

20. 日冕图 C_n circledot K_1

21. 蝌蚪图

22. 网图,以及

23. 轮图 W_n (Frucht 1988)。

n-哑铃图对于 n=4 和 5 是非优美的 (E. Weisstein, 2020 年 8 月 15 日),并且可能对于所有更大的 n 也是如此。

1965 年,Kotzig 猜想所有都是优美的,这是一个几乎可以肯定是正确的猜想,被称为优美图定理,但至今仍未被证明。

还有人猜想,除了圈图 C_nn=1 或 2 (模 4))之外,所有单圈图都是优美的 (Truszczyński 1984, Gallian 2018)。


另请参阅

边优美图, 优美标记, 优美排列, 优美 Pi-路, 优美树定理, 调和图, 标记图, 最大优美图, 非优美图, 唯一优美图

使用 Wolfram|Alpha 探索

参考文献

Abraham, J. and Kotzig, A. "All 2-Regular Graphs Consisting of 4-Cycles are Graceful." Disc. Math. 135, 1-24, 1994.Abraham, J. and Kotzig, A. "Extensions of Graceful Valuations of 2-Regular Graphs Consisting of 4-Gons." Ars Combin. 32, 257-262, 1991.Aldred, R. E. L. and McKay, B. "Graceful and Harmonious Labellings of Trees." Bull. Inst. Combin. Appl. 23, 69-72, 1998.Bloom, G. S. and Golomb, S. W. "Applications of Numbered Unidirected Graphs." Proc. IEEE 65, 562-570, 1977.Bolian, L. and Xiankun, Z. "On Harmonious Labellings of Graphs." Ars Combin. 36, 315-326, 1993.Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 248, 1976.Brualdi, R. A. and McDougal, K. F. "Semibandwidth of Bipartite Graphs and Matrices." Ars Combin. 30, 275-287, 1990.Brundage, M. "Graceful Graphs." http://www.qbrundage.com/michaelb/pubs/graceful/.Cahit, I. "Are All Complete Binary Trees Graceful?" Amer. Math. Monthly 83, 35-37, 1976.Delorme, C.; Maheo, M.; Thuillier, H.; Koh, K. M.; and Teo, H. K. "Cycles with a Chord are Graceful." J. Graph Theory 4, 409-415, 1980.Eshghi, K. and Azimi, P. "Applications Of Mathematical Programming in Graceful Labeling of Graphs." J. Appl. Math. 2004, no. 1, 1-8, 2004.Frucht, R. W. and Gallian, J. A. "Labelling Prisms." Ars Combin. 26, 69-82, 1988.Gallian, J. A. "A Survey: Recent Results, Conjectures, and Open Problems in Labelling Graphs." J. Graph Th. 13, 491-504, 1989.Gallian, J. A. "Open Problems in Grid Labeling." Amer. Math. Monthly 97, 133-135, 1990.Gallian, J. A. "A Guide to the Graph Labelling Zoo." Disc. Appl. Math. 49, 213-229, 1994.Gallian, J. A.; Prout, J.; and Winters, S. "Graceful and Harmonious Labellings of Prism Related Graphs." Ars Combin. 34, 213-222, 1992.Gallian, J. "Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018. https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.Gardner, M. "Mathematical Games: The Graceful Graphs of Solomon Golomb, or How to Number a Graph Parsimoniously." Sci. Amer. 226, No. 3, 108-113, March 1972.Gardner, M. "Golomb's Graceful Graphs." Ch. 15 in Wheels, Life, and Other Mathematical Amusements. New York: W. H. Freeman, pp. 152-165, 1983.Golomb, S. W. "How to Number a Graph." In Graph Theory and Computing (Ed. R. C. Read). New York: Academic Press, pp. 23-37, 1972.Golomb, S. W. "The Largest Graceful Subgraph of the Complete Graph." Amer. Math. Monthly 81, 499-501, 1974.Graham, R. L. and Sloane, N. J. A. "On Additive Bases and Harmonious Graphs." SIAM J. Alg. Discrete Methods 1, 382-404, 1980.Guy, R. "Monthly Research Problems, 1969-75." Amer. Math. Monthly 82, 995-1004, 1975.Guy, R. "Monthly Research Problems, 1969-1979." Amer. Math. Monthly 86, 847-852, 1979.Guy, R. K. "The Corresponding Modular Covering Problem. Harmonious Labelling of Graphs." §C13 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 127-128, 1994.Horton, M. "Graceful Trees: Statistics and Algorithms." Bachelor of Computing with Honours thesis. University of Tasmania, 2003. https://eprints.utas.edu.au/19/1/GracefulTreesStatisticsAndAlgorithms.pdf.Huang, J. H. and Skiena, S. "Gracefully Labelling Prisms." Ars Combin. 38, 225-242, 1994.Jungreis, D. S. and Reid, M. "Labelling Grids." Ars Combin. 34, 167-182, 1992.Knuth, D. E. §7.2.2.3 in The Art of Computer Programming, Vol. 4B: Combinatorial Algorithms, Part 2. New York: Addison-Wesley, 2022.Koh, K. M. and Punnim, N. "On Graceful Graphs: Cycles with 3-Consecutive Chords." Bull. Malaysian Math. Soc. 5, 49-64, 1982.Koh, K. M. and Yap, K. Y. "Graceful Numberings of Cycles with a P_3-Chord." Bull. Inst. Math. Acad. Sinica 13, 41-48, 1985.Moulton, D. "Graceful Labellings of Triangular Snakes." Ars Combin. 28, 3-13, 1989.Nikoloski, Z.; Deo, N.; and Suraweera, F. "Generation of Graceful Trees." In 33rd Southeastern International Conference on Combinatorics, Graph Theory and Computing. 2002.Punnim, N. and Pabhapote, N. "On Graceful Graphs: Cycles with a P_k-Chord, k>=4." Ars Combin. A 23, 225-228, 1987.Rosa, A. "On Certain Valuations of the Vertices of a Graph." In Theory of Graphs, International Symposium, Rome, July 1966. New York: Gordon and Breach, pp. 349-355, 1967.Seoud, M. A. and Wilson, R. J. "Some Disgraceful Graphs." Int. J. Math. Educ. Sci. Tech. 24, 435-441, 1993.Sierksma, G. and Hoogeveen, H. "Seven Criteria for Integer Sequences Being Graphic." J. Graph Th. 15, 223-231, 1991.Slater, P. J. "Note on k-Graceful, Locally Finite Graphs." J. Combin. Th. Ser. B 35, 319-322, 1983.Sloane, N. J. A. Sequences A308544, A308545, A308548, A308549, A308556, and A308557 in "The On-Line Encyclopedia of Integer Sequences."Snevily, H. S. "New Families of Graphs That Have alpha-Labellings." Preprint.Snevily, H. S. "Remarks on the Graceful Tree Conjecture." Preprint.Truszczyński, M. "Graceful Unicyclic Graphs." Demonstatio Math. 17, 377-387, 1984.Xie, L. T. and Liu, G. Z. "A Survey of the Problem of Graceful Trees." Qufu Shiyuan Xuebao 1, 8-15, 1984.

在 Wolfram|Alpha 中被引用

优美图

请引用本文为

Weisstein, Eric W. "优美图。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/GracefulGraph.html

主题分类