主题
Search

双曲面


Hyperboloid

双曲面是一种二次曲面,可以分为单叶双曲面或双叶双曲面。单叶双曲面是通过将双曲线绕连接两个焦点线段的垂直平分线旋转而获得的旋转曲面,而双叶双曲面是通过将双曲线绕连接两个焦点的直线旋转而获得的旋转曲面(Hilbert and Cohn-Vossen 1991, p. 11)。


另请参阅

桶形面, 悬链面, 共焦椭球坐标, 共焦二次曲面, 圆柱面, 双重直纹曲面, 椭球面, 椭圆双曲面, 双曲线, 双曲面嵌入, 单叶双曲面, 抛物面, 直纹曲面, 意大利面束, 三叶双曲面, 双叶双曲面

使用 Wolfram|Alpha 探索

参考文献

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 227, 1987.Fischer, G. (Ed.). Plates 67 and 69 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, pp. 62 and 64, 1986.Gray, A. "The Hyperboloid of Revolution." §20.5 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 470, 1997.Harris, J. W. and Stocker, H. "Hyperboloid of Revolution." §4.10.3 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 112, 1998.Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, pp. 10-11, 1999.JavaView. "Classic Surfaces from Differential Geometry: Hyperboloid." http://www-sfb288.math.tu-berlin.de/vgp/javaview/demo/surface/common/PaSurface_Hyperboloid.html.Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 112-113, 1991.

引用本文为

Weisstein, Eric W. "Hyperboloid." 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/Hyperboloid.html

主题分类