主题
Search

平面划分


平面划分是整数 n_(i,j) 的二维数组,从左到右和从上到下都是非递增的,并且总和为给定的数字 n。换句话说,

 n_(i,j)>=n_(i,j+1)
(1)
 n_(i,j)>=n_(i+1,j)
(2)

 n=sum_(i,j)n_(i,j).
(3)

这个定义的隐含要求是数组顶部和左侧对齐,并且不包含空洞。

PlanePartition
 5 4 2 1 1; 3 2   ; 2 2
(4)

例如,上面说明了 22 的一个平面划分。

生成函数,用于平面划分的数量 PL(n),为 n,是

 sum_(n=0)^inftyPL(n)x^n=1/(product_(k=1)^(infty)(1-x^k)^k)=1+x+3x^2+6x^3+13x^4+24x^5+...
(5)

(OEIS A000219, MacMahon 1912b, Speciner 1972, Bender and Knuth 1972, Bressoud and Propp 1999)。

写作 a(n)=PL(n)递推方程,用于 a(n),由下式给出

 a(n)=1/nsum_(k=1)^na(n-k)sigma_2(k),
(6)

其中 sigma_k(n)除数函数。它也有生成函数

 G(x)=exp[sum_(n=1)^inftysigma_2(n)(x^n)/n].
(7)

MacMahon (1960) 还表明,Young tableaux 杨氏表 适合 a×b 矩形内部且整数不超过 c 的平面划分的数量 PL(a,b,c) (换句话说,所有 n_(i,j)<=c)由下式给出

 PL(a,b,c)=product_(i=1)^aproduct_(j=1)^bproduct_(k=1)^c(i+j+k-1)/(i+j+k-2)
(8)

(Bressoud and Propp 1999, Fulmek and Krattenthaler 2000)。展开乘积得到

PL(a,b,c)=product_(i=1)^(a)(Gamma(i)Gamma(b+c+i))/(Gamma(b+i)Gamma(c+i))
(9)
=(G(a+1)G(b+1)G(c+1)G(a+b+c+1))/(G(a+b+1)G(a+c+1)G(b+c+1)),
(10)

其中 G(n)Barnes G-函数。取 n=a=b=c 得到

PL(n,n,n)=product_(i=1)^(n)(Gamma(i)Gamma(i+2n))/([Gamma(i+n)]^2)
(11)
=([G(n+1)]^3G(3n+1))/([G(2n+1)]^3),
(12)

其中前几项是 2, 20, 980, 232848, 267227532, 1478619421136, ... (OEIS A008793)。令人惊讶的是,PL(a,b,c) 也给出了边长为 a, b, c, a, b, c 的六边形由菱形铺砌的数量 (David and Tomei 1989, Fulmek and Krattenthaler 2000)。

平面划分的概念也可以推广到立方划分。


另请参阅

循环对称平面划分, 降序平面划分, 六边形铺砌, 划分, Macdonald 平面划分猜想, 立体划分, 完全对称自互补平面划分, Young Tableau

使用 探索

参考文献

Bender, E. A. and Knuth, D. E. "Enumeration of Plane Partitions." J. Combin. Theory Ser. A. 13, 40-54, 1972.Bressoud, D. Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge, England: Cambridge University Press, 1999.Bressoud, D. and Propp, J. "How the Alternating Sign Matrix Conjecture was Solved." Not. Amer. Math. Soc. 46, 637-646.Cohn, H.; Larsen, M.; and Propp, J. "The Shape of a Typical Boxed Plane Partition." New York J. Math. 4, 137-166, 1998.David, G. and Tomei, C. "The Problem of the Calissons." Amer. Math. Monthly 96, 429-431, 1989.Fulmek, M. and Krattenthaler, C. "The Number of Rhombus Tilings of a Symmetric Hexagon which Contains a Fixed Rhombus on the Symmetry Axes, II." Europ. J. Combin. 21, 601-640, 2000.Knuth, D. E. "A Note on Solid Partitions." Math. Comput. 24, 955-961, 1970.MacMahon, P. A. "Memoir on the Theory of the Partitions of Numbers. V: Partitions in Two-Dimensional Space." Phil. Trans. Roy. Soc. London Ser. A 211, 75-110, 1912a.MacMahon, P. A. "Memoir on the Theory of the Partitions of Numbers. VI: Partitions in Two-Dimensional Space, to which is Added an Adumbration of the Theory of Partitions in Three-Dimensional Space." Phil. Trans. Roy. Soc. London Ser. A 211, 345-373, 1912b.MacMahon, P. A. §429 and 494 in Combinatory Analysis, Vol. 2. New York: Chelsea, 1960.Mills, W. H.; Robbins, D. P.; and Rumsey, H. Jr. "Proof of the Macdonald Conjecture." Invent. Math. 66, 73-87, 1982.Sloane, N. J. A. Sequences A000219/M2566 and A008793 in "The On-Line Encyclopedia of Integer Sequences."Speciner, M. Item 18 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 10, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/boolean.html#item18.Stanley, R. P. "Symmetry of Plane Partitions." J. Combin. Th. Ser. A 3, 103-113, 1986.Stanley, R. P. "A Baker's Dozen of Conjectures Concerning Plane Partitions." In Combinatoire Énumérative: Proceedings of the "Colloque De Combinatoire Enumerative," Held at Université Du Quebec a Montreal, May 28-June 1, 1985 (Ed. G. Labelle and P. Leroux). New York: Springer-Verlag, 285-293, 1986.

在 中被引用

平面划分

引用为

Weisstein, Eric W. “平面划分。” 来自 网络资源。 https://mathworld.net.cn/PlanePartition.html

主题分类