主题
Search

哥德巴赫猜想


哥德巴赫最初的猜想(有时称为“三元”哥德巴赫猜想),在 1742 年 6 月 7 日写给欧拉的信中指出,“至少看起来每个大于 2 的数都是三个素数的”(Goldbach 1742;Dickson 2005, p. 421)。请注意,哥德巴赫认为数字 1 是素数,但这种约定已不再被遵循。正如欧拉重新表达的那样,这个猜想的一个等价形式(称为“强”或“二元”哥德巴赫猜想)断言,所有整数 >=4 都可以表示为两个素数。 满足 p+q=2n 的两个素数 (p,q),其中 n 为正整数,有时被称为哥德巴赫划分 (Oliveira e Silva)。

根据 Hardy (1999, p. 19) 的说法,“做出聪明的猜测相对容易;事实上,有一些定理,比如‘哥德巴赫定理’,从未被证明,任何傻瓜都可能猜到。” Faber and Faber 为在 2000 年 3 月 20 日至 2002 年 3 月 20 日期间证明哥德巴赫猜想的任何人提供了 $1000000 美元的奖金,但该奖金无人认领,猜想仍然悬而未决。

Schnirelman (1939) 证明了每个数都可以写成不超过 300000素数 (Dunham 1990),这似乎与证明两个素数相去甚远! Pogorzelski (1977) 声称已经证明了哥德巴赫猜想,但他的证明未被普遍接受 (Shanks 1985)。 下表总结了界限 n,强哥德巴赫猜想已被证明对小于 <n 的数字成立。

界限参考
1×10^4Desboves 1885
1×10^5Pipping 1938
1×10^8Stein and Stein 1965ab
2×10^(10)Granville et al. 1989
4×10^(11)Sinisalo 1993
1×10^(14)Deshouillers et al. 1998
4×10^(14)Richstein 1999, 2001
2×10^(16)Oliveira e Silva (Mar. 24, 2003)
6×10^(16)Oliveira e Silva (Oct. 3, 2003)
2×10^(17)Oliveira e Silva (Feb. 5, 2005)
3×10^(17)Oliveira e Silva (Dec. 30, 2005)
12×10^(17)Oliveira e Silva (Jul. 14, 2008)
4×10^(18)Oliveira e Silva (Apr. 2012)

所有奇数 >=9 都是三个奇素数的猜想被称为“弱”哥德巴赫猜想。 Vinogradov (1937ab, 1954) 证明了每个足够大奇数都是三个素数 (Nagell 1951, p. 66; Guy 1994),Estermann (1938) 证明了几乎所有偶数都是两个素数的和。 Vinogradov 最初的“足够大” N>=3^(3^(15)) approx e^(e^(16.573)) approx 3.25×10^(6846168) 后来被 Chen 和 Wang (1989) 缩小到 e^(e^(11.503)) approx 3.33×10^(43000)。 Chen (1973, 1978) 还表明,所有足够大的偶数都是一个素数和最多两个素数乘积之和 (Guy 1994, Courant and Robbins 1996)。 在最初的猜想提出两个半多世纪之后,弱哥德巴赫猜想被 Helfgott (2013, 2014) 证明。

弱猜想的一个更强版本,即每个大于等于 >=7 的奇数都可以表示为一个素数加上两倍的素数之和,被称为莱维猜想

哥德巴赫猜想的一个等价表述是,对于每个正整数 m,都存在素数 pq 使得

 phi(p)+phi(q)=2m,

其中 phi(x)欧拉函数(例如,Havil 2003, p. 115; Guy 2004, p. 160)。 (这可以立即从素数 pphi(p)=p-1 得出。) Erdős 和 Moser 曾考虑取消此方程中 pq 是素数的限制,作为确定此类数字是否总是存在的可能更简单的方法 (Guy 1994, p. 105)。

哥德巴赫猜想的其他变体包括以下陈述:每个大于等于 >=6偶数是两个素数,每个大于 >17整数是恰好三个不同素数的和。

R(n)偶数 n 表示为两个素数之和的表示数。 那么,“扩展”哥德巴赫猜想指出

 R(n)∼2Pi_2product_(k=2; p_k|n)(p_k-1)/(p_k-2)int_2^n(dx)/((lnx)^2),

其中 Pi_2孪生素数常数 (Halberstam and Richert 1974)。


参见

陈氏定理, 德波利尼亚克猜想, 哥德巴赫数, 哥德巴赫划分, 莱维猜想, 素数划分, Schnirelmann 定理, 不可及数, Waring 素数猜想

使用 探索

参考文献

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 64, 1987.Caldwell, C. K. "Prime Links++." http://primes.utm.edu/links/theory/conjectures/Goldbach/.Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes." Sci. Sinica 16, 157-176, 1973.Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, II." Sci. Sinica 21, 421-430, 1978.Chen, J. R. and Wang, T.-Z. "On the Goldbach Problem." Acta Math. Sinica 32, 702-718, 1989.Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 30-31, 1996.Deshouillers, J.-M.; te Riele, H. J. J.; and Saouter, Y. "New Experimental Results Concerning The Goldbach Conjecture." In Algorithmic Number Theory: Proceedings of the 3rd International Symposium (ANTS-III) held at Reed College, Portland, OR, June 21-25, 1998 (Ed. J. P. Buhler). Berlin: Springer-Verlag, pp. 204-215, 1998.Devlin, K. Mathematics: The New Golden Age, rev. ed. New York: Columbia University Press, 1999.Dickson, L. E. "Goldbach's Empirical Theorem: Every Integer is a Sum of Two Primes." In History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 421-424, 2005.Doxiadis, A. Uncle Petros and Goldbach's Conjecture. Faber & Faber, 2001.Dunham, W. Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, p. 83, 1990.Estermann, T. "On Goldbach's Problem: Proof that Almost All Even Positive Integers are Sums of Two Primes." Proc. London Math. Soc. Ser. 2 44, 307-314, 1938.Faber and Faber. "$1,000,000 Challenge to Prove Goldbach's Conjecture." Archived at http://web.archive.org/web/20020803035741/www.faber.co.uk/faber/million_dollar.asp.Goldbach, C. Letter to L. Euler, June 7, 1742.Granville, A.; van der Lune, J.; and te Riele, H. J. J. "Checking the Goldbach Conjecture on a Vector Computer." In Number Theory and Applications: Proceedings of the NATO Advanced Study Institute held in Banff, Alberta, April 27-May 5, 1988 (Ed. R. A. Mollin). Dordrecht, Netherlands: Kluwer, pp. 423-433, 1989.Guy, R. K. "Goldbach's Conjecture." §C1 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 105-107, 1994.Guy, R. K. Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, 2004.Halberstam, H. and Richert, H.-E. Sieve Methods. New York: Academic Press, 1974.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.Hardy, G. H. and Littlewood, J. E. "Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes." Acta Math. 44, 1-70, 1923.Hardy, G. H. and Littlewood, J. E. "Some Problems of Partitio Numerorum (V): A Further Contribution to the Study of Goldbach's Problem." Proc. London Math. Soc. Ser. 2 22, 46-56, 1924.Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, p. 19, 1979.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.Helfgott, H. A. "The Ternary Goldbach Conjecture." Gac. R. Soc. Mat. Esp. 16, 709-726, 2013.Helfgott, H. A. "The Ternary Goldbach Conjecture Is True." Jan. 17, 2014. https://arxiv.org/pdf/1312.7748.pdf.Nagell, T. Introduction to Number Theory. New York: Wiley, p. 66, 1951.Oliveira e Silva, T. "Goldbach Conjecture Verification." http://www.ieeta.pt/~tos/goldbach.html.Oliveira e Silva, T. "Verification of the Goldbach Conjecture Up to 2*10^16." Mar. 24, 2003a. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0303&L=nmbrthry&P=2394.Oliveira e Silva, T. "Verification of the Goldbach Conjecture Up to 6×10^(16)." Oct. 3, 2003b. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0310&L=nmbrthry&P=168.Oliveira e Silva, T. "New Goldbach Conjecture Verification Limit." Feb. 5, 2005a. http://listserv.nodak.edu/cgi-bin/wa.exe?A1=ind0502&L=nmbrthry#9.Oliveira e Silva, T. "Goldbach Conjecture Verification." Dec. 30, 2005b. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0512&L=nmbrthry&T=0&P=3233.Peterson, I. "Prime Conjecture Verified to New Heights." Sci. News 158, 103, Aug. 12, 2000.Pipping, N. "Die Goldbachsche Vermutung und der Goldbach-Vinogradovsche Satz." Acta. Acad. Aboensis, Math. Phys. 11, 4-25, 1938.Pogorzelski, H. A. "Goldbach Conjecture." J. reine angew. Math. 292, 1-12, 1977.Richstein, J. "Verifying the Goldbach Conjecture up to 4·10^(14)." Presented at Canadian Number Theory Association, Winnipeg/Canada June 20-24, 1999.Richstein, J. "Verifying the Goldbach Conjecture up to 4·10^(14)." Math. Comput. 70, 1745-1750, 2001.Schnirelman, L. G. Uspekhi Math. Nauk 6, 3-8, 1939.Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 30-31 and 222, 1985.Sinisalo, M. K. "Checking the Goldbach Conjecture up to 4·10^(11)." Math. Comput. 61, 931-934, 1993.Stein, M. L. and Stein, P. R. "New Experimental Results on the Goldbach Conjecture." Math. Mag. 38, 72-80, 1965a.Stein, M. L. and Stein, P. R. "Experimental Results on Additive 2 Bases." BIT 38, 427-434, 1965b.Vinogradov, I. M. "Representation of an Odd Number as a Sum of Three Primes." Comptes rendus (Doklady) de l'Académie des Sciences de l'U.R.S.S. 15, 169-172, 1937a.Vinogradov, I. "Some Theorems Concerning the Theory of Primes." Recueil Math. 2, 179-195, 1937b.Vinogradov, I. M. The Method of Trigonometrical Sums in the Theory of Numbers. London: Interscience, p. 67, 1954.Woon, M. S. C. "On Partitions of Goldbach's Conjecture" 4 Oct 2000. http://arxiv.org/abs/math.GM/0010027.Wang, Y. Goldbach Conjecture. Singapore: World Scientific, 1984.

请引用为

Weisstein, Eric W. "哥德巴赫猜想。" 来自 Web 资源。 https://mathworld.net.cn/GoldbachConjecture.html

主题分类