主题
Search

哥德巴赫猜想


哥德巴赫最初的猜想(有时称为“三元”哥德巴赫猜想),在 1742 年 6 月 7 日写给欧拉的信中指出,“至少看起来每个大于 2 的数都是三个素数的”(Goldbach 1742;Dickson 2005, p. 421)。请注意,哥德巴赫认为数字 1 是素数,但这种约定已不再被遵循。正如欧拉重新表达的那样,这个猜想的一个等价形式(称为“强”或“二元”哥德巴赫猜想)断言,所有整数 >=4 都可以表示为两个素数。 满足 p+q=2n 的两个素数 (p,q),其中 n 为正整数,有时被称为哥德巴赫划分 (Oliveira e Silva)。

根据 Hardy (1999, p. 19) 的说法,“做出聪明的猜测相对容易;事实上,有一些定理,比如‘哥德巴赫定理’,从未被证明,任何傻瓜都可能猜到。” Faber and Faber 为在 2000 年 3 月 20 日至 2002 年 3 月 20 日期间证明哥德巴赫猜想的任何人提供了 $1000000 美元的奖金,但该奖金无人认领,猜想仍然悬而未决。

Schnirelman (1939) 证明了每个数都可以写成不超过 300000素数 (Dunham 1990),这似乎与证明两个素数相去甚远! Pogorzelski (1977) 声称已经证明了哥德巴赫猜想,但他的证明未被普遍接受 (Shanks 1985)。 下表总结了界限 n,强哥德巴赫猜想已被证明对小于 <n 的数字成立。

界限参考
1×10^4Desboves 1885
1×10^5Pipping 1938
1×10^8Stein and Stein 1965ab
2×10^(10)Granville et al. 1989
4×10^(11)Sinisalo 1993
1×10^(14)Deshouillers et al. 1998
4×10^(14)Richstein 1999, 2001
2×10^(16)Oliveira e Silva (Mar. 24, 2003)
6×10^(16)Oliveira e Silva (Oct. 3, 2003)
2×10^(17)Oliveira e Silva (Feb. 5, 2005)
3×10^(17)Oliveira e Silva (Dec. 30, 2005)
12×10^(17)Oliveira e Silva (Jul. 14, 2008)
4×10^(18)Oliveira e Silva (Apr. 2012)

所有奇数 >=9 都是三个奇素数的猜想被称为“弱”哥德巴赫猜想。 Vinogradov (1937ab, 1954) 证明了每个足够大奇数都是三个素数 (Nagell 1951, p. 66; Guy 1994),Estermann (1938) 证明了几乎所有偶数都是两个素数的和。 Vinogradov 最初的“足够大” N>=3^(3^(15)) approx e^(e^(16.573)) approx 3.25×10^(6846168) 后来被 Chen 和 Wang (1989) 缩小到 e^(e^(11.503)) approx 3.33×10^(43000)。 Chen (1973, 1978) 还表明,所有足够大的偶数都是一个素数和最多两个素数乘积之和 (Guy 1994, Courant and Robbins 1996)。 在最初的猜想提出两个半多世纪之后,弱哥德巴赫猜想被 Helfgott (2013, 2014) 证明。

弱猜想的一个更强版本,即每个大于等于 >=7 的奇数都可以表示为一个素数加上两倍的素数之和,被称为莱维猜想

哥德巴赫猜想的一个等价表述是,对于每个正整数 m,都存在素数 pq 使得

 phi(p)+phi(q)=2m,

其中 phi(x)欧拉函数(例如,Havil 2003, p. 115; Guy 2004, p. 160)。 (这可以立即从素数 pphi(p)=p-1 得出。) Erdős 和 Moser 曾考虑取消此方程中 pq 是素数的限制,作为确定此类数字是否总是存在的可能更简单的方法 (Guy 1994, p. 105)。

哥德巴赫猜想的其他变体包括以下陈述:每个大于等于 >=6偶数是两个素数,每个大于 >17整数是恰好三个不同素数的和。

R(n)偶数 n 表示为两个素数之和的表示数。 那么,“扩展”哥德巴赫猜想指出

 R(n)∼2Pi_2product_(k=2; p_k|n)(p_k-1)/(p_k-2)int_2^n(dx)/((lnx)^2),

其中 Pi_2孪生素数常数 (Halberstam and Richert 1974)。


参见

陈氏定理, 德波利尼亚克猜想, 哥德巴赫数, 哥德巴赫划分, 莱维猜想, 素数划分, Schnirelmann 定理, 不可及数, Waring 素数猜想

使用 Wolfram|Alpha 探索

参考文献

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 64, 1987.Caldwell, C. K. "Prime Links++." http://primes.utm.edu/links/theory/conjectures/Goldbach/.Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes." Sci. Sinica 16, 157-176, 1973.Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, II." Sci. Sinica 21, 421-430, 1978.Chen, J. R. and Wang, T.-Z. "On the Goldbach Problem." Acta Math. Sinica 32, 702-718, 1989.Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 30-31, 1996.Deshouillers, J.-M.; te Riele, H. J. J.; and Saouter, Y. "New Experimental Results Concerning The Goldbach Conjecture." In Algorithmic Number Theory: Proceedings of the 3rd International Symposium (ANTS-III) held at Reed College, Portland, OR, June 21-25, 1998 (Ed. J. P. Buhler). Berlin: Springer-Verlag, pp. 204-215, 1998.Devlin, K. Mathematics: The New Golden Age, rev. ed. New York: Columbia University Press, 1999.Dickson, L. E. "Goldbach's Empirical Theorem: Every Integer is a Sum of Two Primes." In History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 421-424, 2005.Doxiadis, A. Uncle Petros and Goldbach's Conjecture. Faber & Faber, 2001.Dunham, W. Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, p. 83, 1990.Estermann, T. "On Goldbach's Problem: Proof that Almost All Even Positive Integers are Sums of Two Primes." Proc. London Math. Soc. Ser. 2 44, 307-314, 1938.Faber and Faber. "$1,000,000 Challenge to Prove Goldbach's Conjecture." Archived at http://web.archive.org/web/20020803035741/www.faber.co.uk/faber/million_dollar.asp.Goldbach, C. Letter to L. Euler, June 7, 1742.Granville, A.; van der Lune, J.; and te Riele, H. J. J. "Checking the Goldbach Conjecture on a Vector Computer." In Number Theory and Applications: Proceedings of the NATO Advanced Study Institute held in Banff, Alberta, April 27-May 5, 1988 (Ed. R. A. Mollin). Dordrecht, Netherlands: Kluwer, pp. 423-433, 1989.Guy, R. K. "Goldbach's Conjecture." §C1 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 105-107, 1994.Guy, R. K. Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, 2004.Halberstam, H. and Richert, H.-E. Sieve Methods. New York: Academic Press, 1974.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.Hardy, G. H. and Littlewood, J. E. "Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes." Acta Math. 44, 1-70, 1923.Hardy, G. H. and Littlewood, J. E. "Some Problems of Partitio Numerorum (V): A Further Contribution to the Study of Goldbach's Problem." Proc. London Math. Soc. Ser. 2 22, 46-56, 1924.Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, p. 19, 1979.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.Helfgott, H. A. "The Ternary Goldbach Conjecture." Gac. R. Soc. Mat. Esp. 16, 709-726, 2013.Helfgott, H. A. "The Ternary Goldbach Conjecture Is True." Jan. 17, 2014. https://arxiv.org/pdf/1312.7748.pdf.Nagell, T. Introduction to Number Theory. New York: Wiley, p. 66, 1951.Oliveira e Silva, T. "Goldbach Conjecture Verification." http://www.ieeta.pt/~tos/goldbach.html.Oliveira e Silva, T. "Verification of the Goldbach Conjecture Up to 2*10^16." Mar. 24, 2003a. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0303&L=nmbrthry&P=2394.Oliveira e Silva, T. "Verification of the Goldbach Conjecture Up to 6×10^(16)." Oct. 3, 2003b. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0310&L=nmbrthry&P=168.Oliveira e Silva, T. "New Goldbach Conjecture Verification Limit." Feb. 5, 2005a. http://listserv.nodak.edu/cgi-bin/wa.exe?A1=ind0502&L=nmbrthry#9.Oliveira e Silva, T. "Goldbach Conjecture Verification." Dec. 30, 2005b. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0512&L=nmbrthry&T=0&P=3233.Peterson, I. "Prime Conjecture Verified to New Heights." Sci. News 158, 103, Aug. 12, 2000.Pipping, N. "Die Goldbachsche Vermutung und der Goldbach-Vinogradovsche Satz." Acta. Acad. Aboensis, Math. Phys. 11, 4-25, 1938.Pogorzelski, H. A. "Goldbach Conjecture." J. reine angew. Math. 292, 1-12, 1977.Richstein, J. "Verifying the Goldbach Conjecture up to 4·10^(14)." Presented at Canadian Number Theory Association, Winnipeg/Canada June 20-24, 1999.Richstein, J. "Verifying the Goldbach Conjecture up to 4·10^(14)." Math. Comput. 70, 1745-1750, 2001.Schnirelman, L. G. Uspekhi Math. Nauk 6, 3-8, 1939.Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 30-31 and 222, 1985.Sinisalo, M. K. "Checking the Goldbach Conjecture up to 4·10^(11)." Math. Comput. 61, 931-934, 1993.Stein, M. L. and Stein, P. R. "New Experimental Results on the Goldbach Conjecture." Math. Mag. 38, 72-80, 1965a.Stein, M. L. and Stein, P. R. "Experimental Results on Additive 2 Bases." BIT 38, 427-434, 1965b.Vinogradov, I. M. "Representation of an Odd Number as a Sum of Three Primes." Comptes rendus (Doklady) de l'Académie des Sciences de l'U.R.S.S. 15, 169-172, 1937a.Vinogradov, I. "Some Theorems Concerning the Theory of Primes." Recueil Math. 2, 179-195, 1937b.Vinogradov, I. M. The Method of Trigonometrical Sums in the Theory of Numbers. London: Interscience, p. 67, 1954.Woon, M. S. C. "On Partitions of Goldbach's Conjecture" 4 Oct 2000. http://arxiv.org/abs/math.GM/0010027.Wang, Y. Goldbach Conjecture. Singapore: World Scientific, 1984.

请引用为

Weisstein, Eric W. "哥德巴赫猜想。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/GoldbachConjecture.html

主题分类