主题
Search

陈氏定理


每一个“大的” 偶数 可以被写作 2n=p+m,其中 p 是一个素数,而 m in P union P_2 属于由素数 (P) 和 半素数 (P_2) 构成的集合


参见

殆素数, 陈素数, 哥德巴赫猜想, 素数, 施尼雷尔曼定理, 半素数

使用 Wolfram|Alpha 探索

参考文献

Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes." Kexue Tongbao 17, 385-386, 1966.Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes. I." Sci. Sinica 16, 157-176, 1973.Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes. II." Sci. Sinica 16, 421-430, 1978.Hardy, G. H. and Wright, W. M. "Unsolved Problems Concerning Primes." Appendix §3 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, pp. 415-416, 1979.Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, p. 297, 1996.Rivera, C. "Problems & Puzzles: Conjecture 002.-Chen's Conjecture." http://www.primepuzzles.net/conjectures/conj_002.htm.Ross, P. M. "On Chen's Theorem that Each Large Even Number has the Form p_1+p_2 or p_1+p_2p_3." J. London Math. Soc. 10, 500-506, 1975.

在 Wolfram|Alpha 中被引用

陈氏定理

如此引用

Weisstein, Eric W. "陈氏定理。" 来自 MathWorld——Wolfram 网络资源。 https://mathworld.net.cn/ChensTheorem.html

主题分类