Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.Andrews, G. E.; Askey, R.; and Roy, R. "拉盖尔多项式。" §6.2 in Special Functions. Cambridge, England: Cambridge University Press, pp. 282-293, 1999.Arfken, G. "拉盖尔函数。" §13.2 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 721-731, 1985.Chebyshev, P. L. "论单变量函数展开。" Bull. Ph.-Math., Acad. Imp. Sc. St. Pétersbourg1, 193-200, 1859.Chebyshev, P. L. Oeuvres, Vol. 1. New York: Chelsea, pp. 499-508, 1987.Iyanaga, S. and Kawada, Y. (Eds.). "Laguerre Functions." Appendix A, Table 20.VI in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1481, 1980.Koekoek, R. and Swarttouw, R. F. "拉盖尔。" §1.11 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 47-49, 1998.Laguerre, E. de. "关于积分 。" Bull. Soc. math. France7, 72-81, 1879. Reprinted in Oeuvres, Vol. 1. New York: Chelsea, pp. 428-437, 1971.Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 61-62, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.Roman, S. "拉盖尔多项式。" §3.1 i The Umbral Calculus. New York: Academic Press, pp. 108-113, 1984.Rota, G.-C.; Kahaner, D.; Odlyzko, A. "拉盖尔多项式。" §11 in "组合理论基础。VIII:有限算子微积分。" J. Math. Anal. Appl.42, 684-760, 1973.Sansone, G. "拉盖尔级数和埃尔米特级数展开式。" Ch. 4 in Orthogonal Functions, rev. English ed. New York: Dover, pp. 295-385, 1991.Sloane, N. J. A. Sequences A000142/M1675 and A021009 in "The On-Line Encyclopedia of Integer Sequences."Sonine, N. J. "关于柱函数和连续函数的级数展开。" Math. Ann.16, 1-80, 1880.Spanier, J. and Oldham, K. B. "拉盖尔多项式 。" Ch. 23 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 209-216, 1987.Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975.Whittaker, E. T. and Watson, G. N. Ch. 16, Ex. 8 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, p. 352, 1990.