主题
Search

角的三等分


TrisectionAngle

角的三等分是将一个任意分成三个相等的。它是古代几何难题之一,人们试图仅用圆规直尺找到解法。Wantzel (1836) 在代数上证明了这个问题是无解的。

Trisection

虽然使用希腊作图法无法对一般进行三等分,但对于某些特定的角,例如 pi/2pi 弧度(分别为 90 degrees180 degrees),可以进行三等分。此外,一些在几何上是可三等分的,但最初无法构造出来,例如 3pi/7(Honsberger 1991)。此外,使用有刻度直尺Neusis 作图法)可以完成任意角的三等分,如上图所示(Courant 和 Robbins 1996)。

也可以使用 Hippias 的割圆曲线三等分曲线将一个分成三个(或任意整数个)相等的部分。

AngleTrisectionSteinhaus

Steinhaus 描述了一种近似三等分法(Wazewski 1945;Peterson 1983;Steinhaus 1999,第 7 页)。为了构造角度为 A,度量为 alpha 的近似值,首先平分 A,然后三等分弦 BE(上图左侧)。所需的近似值是角度为 DAB,度量为 t(上图右侧)。为了将 talpha/3 联系起来,在三角形 DeltaDABDeltaEAD 上使用正弦定理,得到

 (sint)/(DB)=(sinx)/(AD)=(sinbeta)/(ED),
(1)

因此 sint=2sinbeta。由于我们也有 beta=(alpha/2)-t,这可以写成

 sint=2[sin(1/2alpha)cost-sintcos(1/2alpha)].
(2)

求解 t,得到

 t=tan^(-1)((2sin(1/2alpha))/(1+2cos(1/2alpha))).
(3)
AngleTrisectionError

即使对于高达 120 degrees 的角度 alpha,此近似值与 alpha/3 的误差也在 1 degrees 以内,如上图所示,并在下表(Petersen 1983)中进行了总结,其中角度以度为单位。

alpha ( degrees)alpha/3 ( degrees)t ( degrees)s ( degrees)
103.3333333.3338043.332393
206.6666666.6704376.659126
3010.00000010.0127659.974470
4013.33333313.36372713.272545
5016.66666716.72637416.547252
6020.00000020.10390919.792181
7023.33333323.49973723.000526
8026.66666726.91751126.164978
9030.00000030.36119329.277613
9933.00000033.48623432.027533

t 具有麦克劳林级数

 t=1/3alpha+1/(648)alpha^3+1/(31104)alpha^5+...
(4)

(OEIS A158599A158600),很容易看出它是 alpha/3 的非常好的近似值。


另请参阅

角平分线, 阿基米德螺线, 化圆为方, 尼科梅德斯蚌线, 倍立方, 切瓦旋轮线, 麦克劳林三等分曲线, 莫雷定理, Neusis 作图法, 折纸, 皮尔庞特素数, Hippias 的割圆曲线, 战斧, 三等分曲线

使用 Wolfram|Alpha 探索

参考文献

Bogomolny, A. "Angle Trisection." http://www.cut-the-knot.org/pythagoras/archi.shtml.Bogomolny, A. "Angle Trisection by Hippocrates." http://www.cut-the-knot.org/Curriculum/Geometry/Hippocrates.html.Bold, B. "The Problem of Trisecting an Angle." Ch. 5 in Famous Problems of Geometry and How to Solve Them. New York: Dover, pp. 33-37, 1982.Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 190-191, 1996.Courant, R. and Robbins, H. "Trisecting the Angle." §3.3.3 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 137-138, 1996.Coxeter, H. S. M. "Angle Trisection." §2.2 in Introduction to Geometry, 2nd ed. New York: Wiley, p. 28, 1969.Dixon, R. Mathographics. New York: Dover, pp. 50-51, 1991.Dörrie, H. "Trisection of an Angle." §36 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 172-177, 1965.Dudley, U. The Trisectors. Washington, DC: Math. Assoc. Amer., 1994.Geometry Center. "Angle Trisection." http://www.geom.umn.edu:80/docs/forum/angtri/.Honsberger, R. More Mathematical Morsels. Washington, DC: Math. Assoc. Amer., pp. 25-26, 1991.Klein, F. "The Delian Problem and the Trisection of the Angle." Ch. 2 in "Famous Problems of Elementary Geometry: The Duplication of the Cube, the Trisection of the Angle, and the Quadrature of the Circle." In Famous Problems and Other Monographs. New York: Chelsea, pp. 13-15, 1980.Loy, J. "Trisection of an Angle." http://www.jimloy.com/geometry/trisect.htm.Ogilvy, C. S. "Solution to Problem E 1153." Amer. Math. Monthly 62, 584, 1955. Ogilvy, C. S. "Angle Trisection." Excursions in Geometry. New York: Dover, pp. 135-141, 1990.Peterson, G. "Approximation to an Angle Trisection." Two-Year Coll. Math. J. 14, 166-167, 1983.Scudder, H. T. "How to Trisect and Angle with a Carpenter's Square." Amer. Math. Monthly 35, 250-251, 1928.Sloane, N. J. A. Sequences A158599 and A158600 in "The On-Line Encyclopedia of Integer Sequences."Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.Wantzel, M. L. "Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas." J. Math. pures appliq. 1, 366-372, 1836.Wazewski, T. Ann. Soc. Polonaise Math. 18, 164, 1945.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 25, 1991.Yates, R. C. The Trisection Problem. Reston, VA: National Council of Teachers of Mathematics, 1971.

请引用本文为

Weisstein, Eric W. "角的三等分。" 来源 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/AngleTrisection.html

学科分类