主题
Search

西尔维斯特四点问题


SylvestersFourPoints

西尔维斯特四点问题询问的是概率 q(R),即在平面区域 R 中随机选择的四个点,其 凸包 是一个 四边形 (Sylvester 1865)。根据从无限平面中选取点的方法不同,可能存在许多不同的解,促使西尔维斯特得出结论:“这个问题不承认确定的解”(Sylvester 1865;Pfiefer 1989)。

对于从平面 平面 的具有有限 面积 的开凸子集中选取的点,概率由下式给出

 P(R)=1-(4A^__R)/(A(R)),
(1)

其中 A^__R 是区域 R 上三角形的期望面积,A(R) 是区域 R 的面积 (Efron 1965)。请注意,A^__R 只是为适当区域计算的值,例如,圆盘三角形选取三角形三角形选取正方形三角形选取 等,其中 A_R 可以使用 Alikoski 公式精确计算 多边形三角形选取 的值。

P(R) 可以介于

 2/3<=q(R)<=1-(35)/(12pi^2)
(2)

(0.66666<=q(R)<=0.70448) 之间,具体取决于区域的形状,正如 Blaschke 首次证明的那样 (Blaschke 1923, Peyerimhoff 1997)。下表给出了各种简单平面区域的概率 (Kendall and Moran 1963; Pfiefer 1989; Croft et al. 1991, pp. 54-55; Peyerimhoff 1997)。

RP(R)
三角形2/30.66667
正方形(25)/(36)0.69444
五边形2/(45)(18-sqrt(5))0.70062
六边形(683)/(972)0.70267
椭圆, 圆盘1-(35)/(12pi^2)0.70448

西尔维斯特问题可以推广为询问概率,即在 单位球 B^n 中随机选择的 n+2 个点的 凸包 具有 n+1 个顶点。解由下式给出

 P_n=((n+2)(n+1; 1/2(n+1))^(n+1))/(2^n((n+1)^2; 1/2(n+1)^2))
(3)

(Kingman 1969, Groemer 1973, Peyerimhoff 1997),这对于任何有界的 凸域 K in R^n 来说是最大可能的。前几个值是

P_1=1
(4)
P_2=(35)/(12pi^2)
(5)
P_3=9/(143)
(6)
P_4=(676039)/(648000pi^4)
(7)
P_5=(20000)/(12964479)
(8)

(OEIS A051050A051051)。

另一个推广询问的是概率,即在固定的有界 凸域 K subset R^2 中随机选择的 n 个点是凸 n-边形的顶点。解是

 P_n=(2^n(3n-3)!)/([(n-1)!]^3(2n)!)
(9)

对于三角形域,其前几个值为 1, 1, 1, 2/3, 11/36, 91/900, 17/675, ... (OEIS A004677A004824),以及

 P_n=[1/(n!)(2n-2; n-1)]^2
(10)

对于平行四边形域,其前几个值为 1, 1, 1, 25/36, 49/144, 121/3600, ... (OEIS A004936A005017; Valtr 1996, Peyerimhoff 1997)。

西尔维斯特四点问题与图的 直线交叉数 有着意想不到的联系 (Finch 2003)。


另请参阅

圆盘三角形选取, 六边形三角形选取, 多边形三角形选取, 直线交叉数, 正方形三角形选取, 三角形三角形选取

使用 探索

参考文献

Alikoski, H. A. "Über das Sylvestersche Vierpunktproblem." Ann. Acad. Sci. Fenn. 51, No. 7, 1-10, 1939.Blaschke, W. "Über affine Geometrie XI: Lösung des 'Vierpunktproblems' von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten." Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-Phys. Kl. 69, 436-453, 1917.Blaschke, W. §24-25 in Vorlesungen über Differentialgeometrie, II. Affine Differentialgeometrie. Berlin: Springer-Verlag, 1923.Croft, H. T.; Falconer, K. J.; and Guy, R. K. "Random Polygons and Polyhedra." §B5 in Unsolved Problems in Geometry. New York: Springer-Verlag, pp. 54-57, 1991.Crofton, M. W. "Probability." Encyclopedia Britannica, Vol. 19, 9th ed. pp. 768-788, 1885.Efron, B. "The Convex Hull of a Random Set of Points." Biometrika 52, 331-343, 1965.Finch, S. R. "Rectilinear Crossing Constant." §8.18 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 532-534, 2003.Groemer, H. "On Some Mean Values Associated with a Randomly Selected Simlpex in a Convex Set." Pacific J. Math. 45, 525-533, 1973.Kendall, M. G. and Moran, P. A. P. Geometrical Probability. New York: Hafner, 1963.Kingman, J. F. C. "Random Secants of a Convex Body." J. Appl. Prob. 6, 660-672, 1969.Klee, V. "What is the Expected Volume of a Simplex Whose Vertices are Chosen at Random from a Given Convex Body." Amer. Math. Monthly 76, 286-288, 1969.Peyerimhoff, N. "Areas and Intersections in Convex Domains." Amer. Math. Monthly 104, 697-704, 1997.Pfiefer, R. E. "The Historical Development of J. J. Sylvester's Four Point Problem." Math. Mag. 62, 309-317, 1989.Rottenberg, R. R. "On Finite Sets of Points in P^3." Israel J. Math. 10, 160-171, 1971.Santaló, L. A. Integral Geometry and Geometric Probability. Reading, MA: Addison-Wesley, 1976.Scheinerman, E. and Wilf, H. S. "The Rectilinear Crossing Number of a Complete Graph and Sylvester's 'Four Point' Problem of Geometric Probability." Amer. Math. Monthly 101, 939-943, 1994.Sloane, N. J. A. Sequences A004677, A004824, A004936, A005017, A051050, and A051051 in "The On-Line Encyclopedia of Integer Sequences."Solomon, H. "Crofton's Theorem and Sylvester's Problem in Two and Three Dimensions." Ch. 5 in Geometric Probability. Philadelphia, PA: SIAM, pp. 97-125, 1978.Sylvester, J. J. "Question 1491." The Educational Times (London). April 1864.Sylvester, J. J. "On a Special Class of Questions on the Theory of Probabilities." Birmingham British Assoc. Rept., pp. 8-9, 1865.Valtr, P. "Probability that n Random Points are in a Convex Position." Discrete Comput. Geom. 13, 637-643, 1995.Valtr, P. "The Probability that n Random Points in a Triangle are in Convex Position." Combinatorica 16, 567-573, 1996.Weil, W. and Wieacker, J. "Stochastic Geometry." Ch. 5.2 in Handbook of Convex Geometry (Ed. P. M. Gruber and J. M. Wills). Amsterdam, Netherlands: North-Holland, pp. 1391-1438, 1993.Wilf, H. "On Crossing Numbers, and Some Unsolved Problems." In Combinatorics, Geometry, and Probability: A Tribute to Paul Erdős. Papers from the Conference in Honor of Erdős' 80th Birthday Held at Trinity College, Cambridge, March 1993 (Ed. B. Bollobás and A. Thomason). Cambridge, England: Cambridge University Press, pp. 557-562, 1997.Woolhouse, W. S. B. "Some Additional Observations on the Four-Point Problem." Mathematical Questions, with Their Solutions, from the Educational Times, Vol. 7. London: F. Hodgson and Son, p. 81, 1867.

在 上引用

西尔维斯特四点问题

请引用为

Weisstein, Eric W. "西尔维斯特四点问题。" 来自 Web 资源。 https://mathworld.net.cn/SylvestersFour-PointProblem.html

学科分类