游戏论是数学的一个分支,它处理对博弈(即,涉及利益冲突各方的情况)的分析。除了简单博弈中可能存在的数学优雅性和完整的“解”之外,博弈论的原理也应用于复杂的博弈,如纸牌、跳棋和国际象棋,以及现实世界中各种各样的问题,如经济学、财产分割、政治和战争。
游戏论有两个不同的分支:组合博弈论和经典博弈论。
组合博弈论涵盖了完全信息的两人博弈,例如围棋、国际象棋或跳棋。值得注意的是,组合博弈没有机会元素,并且玩家轮流进行。
在经典博弈论中,玩家同时移动、下注或制定策略。隐藏信息和机会元素是这个博弈论分支的常见特征,它也是经济学的一个分支。
电视剧犯罪剧集《Dirty Bomb》(2005 年)一集(以及许多其他剧集)中,主角查理使用博弈论作为解决犯罪的工具。
另请参阅
Borel 决定性定理,
范畴博弈,
跳棋,
国际象棋,
组合博弈论,
决策论,
有限博弈,
无用博弈,
博弈期望,
博弈鞍点,
围棋,
公平博弈,
Mex,
极小极大定理,
混合策略,
纳什均衡,
纳什定理,
尼姆游戏,
尼姆值,
偏袒博弈,
收益矩阵,
Peg Solitaire,
完全信息,
安全,
策略,
一报还一报,
不安全,
值,
Wythoff 游戏,
零和博弈
使用 Wolfram|Alpha 探索
参考文献
Ahrens, W. Mathematische Unterhaltungen und Spiele. Leipzig, Germany: Teubner, 1910.Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 1: Adding Games, 2nd ed. Wellesley, MA: A K Peters, 2001.Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 2: Games in Particular. London: Academic Press, 1982.Conway, J. H. On Numbers and Games, 2nd ed. Wellesley, MA: A K Peters, 2000.Dresher, M. The Mathematics of Games of Strategy: Theory and Applications. New York: Dover, 1981.Eppstein, D. "Combinatorial Game Theory." http://www.ics.uci.edu/~eppstein/cgt/.Gardner, M. "Game Theory, Guess It, Foxholes." Ch. 3 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 35-49, 1978.Gardner, R. Games for Business and Economics. New York: Wiley, 1994.Isaacs, R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. New York: Dover, 1999.Karlin, S. Mathematical Methods and Theory in Games, Programming, and Economics, 2 Vols. Vol. 1: Matrix Games, Programming, and Mathematical Economics. Vol. 2: The Theory of Infinite Games. New York: Dover, 1992.Kuhn, H. W. (Ed.). Classics in Game Theory. Princeton, NJ: Princeton University Press, 1997.McKinsey, J. C. C. Introduction to the Theory of Games. New York: McGraw-Hill, 1952.Mérö, L. Moral Calculations: Game Theory, Logic and Human Frailty. New York: Springer-Verlag, 1998.Neumann, J. von and Morgenstern, O. Theory of Games and Economic Behavior, 3rd ed. New York: Wiley, 1964.Packel, E. The Mathematics of Games and Gambling, 2nd ed. Washington, DC: Math. Assoc. Amer., 2006.Stahl, S. A Gentle Introduction to Game Theory. Providence, RI: Amer. Math. Soc., 1999.Straffin, P. D. Jr. Game Theory and Strategy. Washington, DC: Math. Assoc. Amer., 1993.Vajda, S. Mathematical Games and How to Play Them. New York: Routledge, 1992.Walker, P. "An Outline of the History of Game Theory." http://www.econ.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm.Weisstein, E. W. "Books about Game Theory." http://www.ericweisstein.com/encyclopedias/books/GameTheory.html.Williams, J. D. The Compleat Strategyst, Being a Primer on the Theory of Games of Strategy. New York: Dover, 1986.在 Wolfram|Alpha 上被引用
游戏论
引用为
Weisstein, Eric W. “游戏论。” 来自 MathWorld——Wolfram 网络资源。 https://mathworld.net.cn/GameTheory.html
主题分类