扫描一个常数的十进制展开(包括小数点左侧的任何数字),直到所有 -位字符串都出现过(包括 0 填充的字符串)。下表给出了为了遇到所有
, 2, ...-位字符串必须扫描的位数(其中“位数”指的是
-位字符串的结尾数字,而不是起始数字),以及最后遇到的
-位字符串。
常数 | OEIS | 序列 |
Apéry 常数 | A036906 | 23, 457, 7839, 83054, 1256587, 13881136, 166670757, ... |
A036902 | 7, 89, 211, 2861, 43983, 29270, 8261623, ... | |
Catalan 常数 | A000000 | 32, 716, 7700, 86482, 1143572, ... |
A000000 | 8, 45, 529, 2679, 24200, ... | |
Champernowne 常数 | A072290 | 11, 192, 2893, 38894, 488895, 5888896, 68888897, 788888898, 8888888899, ... |
Copeland-Erdős 常数 | A000000 | 48, 934, 24437, 366399, 4910479, 49672582, ... |
A000000 | 0, 84, 504, 8580, 07010, 088880, ... | |
e | A036904 | 21, 372, 8092, 102128, 1061613, 12108841, 198150341, 1929504534, ... |
A036900 | 6, 12, 548, 1769, 92994, 513311, 1934715, 56891305, ... | |
欧拉-马歇罗尼常数 | A000000 | 16, 658, 6600, 91101, 1384372, ... |
A000000 | 8, 18, 346, 2778, 84514, ... | |
格莱舍-金克林常数 | A000000 | 22, 495, 7233, ... |
A000000 | 5, 98, 478, ... | |
黄金比例 | A000000 | 23, 770, 5819, 93910, 1154766, 13192647, ... |
A000000 | 5, 55, 515, 0092, 67799, 290503, ... | |
Golomb-Dickman 常数 | A000000 | 28, 587, 6322, ... |
A000000 | 1, 33, 821, ... | |
辛钦常数 | A000000 | 23, 499, 8254, ... |
A000000 | 7, 43, 782, ... | |
自然对数 2 | A036905 | 22, 444, 7655, 98370, 1107795, 12983306, ... |
A036901 | 2, 98, 604, 1155, 46847, 175403, ... | |
自然对数 10 | A229124 | 22, 701, 7486, 88092, 1189434, 13426407, ... |
A229126 | 7, 38, 351, 8493, 33058, 362945, ... | |
π | A080597 | 33, 607, 8556, 99850, 1369565, 14118313, 166100507, 1816743913, 22445207407, 241641121049, 2512258603208, ... |
A032510 | 0, 68, 483, 6716, 33394, 569540, 1075656, 36432643, 172484538, 5918289042, 56377726040, ... | |
毕达哥拉斯常数 | A000000 | 19, 420, 8326, 94388, 1256460, 13043524, ... |
A000000 | 8, 81, 748, 8505, 30103, 489568, ... | |
索尔德纳常数 | A000000 | 34, 512, 7454, 92508, ... |
A000000 | 7, 46, 102, 5858, ... | |
特奥多鲁斯常数 | A000000 | 23, 378, 7862, 77437, 1237533, 16362668, ... |
A000000 | 4, 91, 184, 5566, 86134, 35343, ... |
下表总结了常数的十进制展开中 , 1, 2, ... 首次出现的起始位置,其中小数点左侧的任何初始 0 都将被忽略,任何非零初始数字都将被视为“第一”位数字。
常数 | OEIS | 0, 1, 2, ... 的首次出现 |
Apéry 常数 | A229187 | 3, 1, 2, 10, 16, 6, 7, 23, 18, 8, ... |
Catalan 常数 | A100079 | 16, 2, 13, 24, 9, 3, 5, 11, 32, 1, ... |
Champernowne 常数 | A229186 | 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... |
Copeland-Erdős 常数 | A229190 | 48, 5, 1, 2, 21, 3, 31, 4, 41, 12, ... |
e | A088576 | 14, 3, 1, 18, 11, 12, 21, 2, 4, 13, ... |
欧拉-马歇罗尼常数 | A229192 | 11, 5, 4, 14, 9, 1, 7, 2, 16, 10, 36, ... |
格莱舍-金克林常数 | A229193 | 12, 1, 2, 18, 5, 22, 14, 7, 3, 10, 11, ... |
Golomb-Dickman 常数 | A229195 | 15, 28, 2, 4, 3, 10, 1, 17, 8, 6, 28, ... |
黄金比例 | A088577 | 5, 1, 20, 6, 12, 23, 2, 11, 4, 8, 232, ... |
辛钦常数 | A229196 | 8, 10, 1, 14, 5, 4, 2, 23, 3, 22, 10, ... |
自然对数 2 | A100077 | 9, 4, 22, 3, 5, 10, 1, 6, 8, 2, 108, ... |
自然对数 10 | A229197 | 3, 21, 1, 2, 13, 5, 17, 22, 6, 9, 41, ... |
π | A032445 | 33, 2, 7, 1, 3, 5, 8, 14, 12, 6, 50, ... |
毕达哥拉斯常数 | A229199 | 14, 1, 5, 7, 2, 8, 9, 12, 19, 15, 77, ... |
索尔德纳常数 | A229201 | 17, 1, 8, 5, 2, 3, 6, 34, 11, 7, 16, ... |
特奥多鲁斯常数 | A229200 | 5, 1, 4, 3, 23, 6, 12, 2, 8, 18, 48, ... |