Andrews, G. E. "On Rogers-Ramanujan Type Identities Related to the Moduls 11." Proc. London Math. Soc.30, 330-346, 1975.Andrews, G. E. "The Hard-Hexagon Model and Rogers-Ramanujan Type Identities." Proc. Nat. Acad. Sci. U.S.A.78, 5290-5292, 1981.Andrews, G. E. Encyclopedia of Mathematics and Its Applications, Vol. 2: The Theory of Partitions. Cambridge, England: Cambridge University Press, pp. 109 and 238, 1984.Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., pp. 17-20, 1986.Andrews, G. E. and Baxter, R. J. "A Motivated Proof of the Rogers-Ramanujan Identities." Amer. Math. Monthly96, 401-409, 1989.Andrews, G. E. and Santos, J. P. O. "Rogers-Ramanujan Type Identities for Partitions with Attached Odd Parts." Ramanujan J.1, 91-99, 1997.Andrews, G. E.; Baxter, R. J.; and Forrester, P. J. "Eight-Vertex SOS Model and Generalized Rogers-Ramanujan-Type Identities." J. Stat. Phys.35, 193-266, 1984.Bailey, W. N. "Some Identities in Combinatory Analysis." Proc. London Math. Soc.49, 421-435, 1947.Bailey, W. N, "Identities of the Rogers-Ramanujan type." Proc. London Math. Soc., 50, 421-435, 1949.Bressoud, D. M. Analytic and Combinatorial Generalizations of the Rogers-Ramanujan Identities. Providence, RI: Amer. Math. Soc., 1980.Fulman, J. "The Rogers-Ramanujan Identities, The Finite General Linear Groups, and the Hall-Littlewood Polynomials." Proc. Amer. Math. Soc.128, 17-25, 1999.Garsia, A. M. and Milne, S. C. "A Method for Constructing Bijections for Classical Partition Identities." Proc. Nat. Acad. Sci. USA78, 2026-2028, 1981a.Garsia, A. M. and Milne, S. C. "A Rogers-Ramanujan Bijection." J. Combin. Th. Ser. A31, 289-339, 1981b.Guy, R. K. "The Strong Law of Small Numbers." Amer. Math. Monthly95, 697-712, 1988.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 13 and 90-99, 1999.Hardy, G. H. and Wright, E. M. "The Rogers-Ramanujan Identities." §19.13 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 290-294, 1979.MacMahon, P. A. Combinatory Analysis, Vol. 2. New York: Chelsea, pp. 33-36, 1960.Mc Laughlin, J.; Sills, A. V.; and Zimmer, P. "Dynamic Survey DS15: Rogers-Ramanujan-Slater Type Identities." Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. http://www.combinatorics.org/Surveys/ds15.pdf.Paule, P. "Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type." Electronic J. Combinatorics1, No. 1, R10, 1-9, 1994. http://www.combinatorics.org/Volume_1/Abstracts/v1i1r10.html.Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, p. 117, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.Ramanujan, S. Problem 584. J. Indian Math. Soc.6, 199-200, 1914.Robinson, R. M. "Comment to: 'A Motivated Proof of the Rogers-Ramanujan Identities.' " Amer. Math. Monthly97, 214-215, 1990.Rogers, L. J. "Second Memoir on the Expansion of Certain Infinite Products." Proc. London Math. Soc.25, 318-343, 1894.Rogers, L. J. "On Two Theorems of Combinatory Analysis and Some Allied Identities." Proc. London Math. Soc.16, 315-336, 1917.Rogers, L. J. "Proof of Certain Identities in Combinatory Analysis." Proc. Cambridge Philos. Soc.19, 211-214, 1919.Schur, I. "Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche." Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse, pp. 302-321, 1917.Slater, L. J. "Further Identities of the Rogers-Ramanujan Type." Proc. London Math. Soc. Ser. 254, 147-167, 1952.Sloane, N. J. A. Sequences A003106/M0261, A003114/M0266, and A006141/M0260 in "The On-Line Encyclopedia of Integer Sequences."Watson, G. N. "A New Proof of the Rogers-Ramanujan Identities." J. London Math. Soc.4, 4-9, 1929.Watson, G. N. "Theorems Stated by Ramanujan (VII): Theorems on Continued Fractions." J. London Math. Soc.4, 39-48, 1929.