主题
Search

素数和


PrimeSum

 Sigma(n)=sum_(i=1)^np_i
(1)

为前 n素数之和(即,素数阶乘函数的求和模拟)。前几项是 2, 5, 10, 17, 28, 41, 58, 77, ... (OEIS A007504)。 Bach 和 Shallit (1996) 表明

 Sigma(n)∼1/2n^2lnn,
(2)

并提供了一种估计此类总和的通用技术。

使得 Sigma(n) 为素数的前几个 n 值是 1, 2, 4, 6, 12, 14, 60, 64, 96, 100, ... (OEIS A013916)。对应的 Sigma(n) 值是 2, 5, 17, 41, 197, 281, 7699, 8893, 22039, 24133, ... (OEIS A013918)。

使得 n|Sigma(n) 的前几个 n 值是 1, 23, 53, 853, 11869, 117267, 339615, 3600489, 96643287, ... (OEIS A045345)。对应的 Sigma(n) 值是 2, 874, 5830, 2615298, 712377380, 86810649294, 794712005370, 105784534314378, 92542301212047102, ... (OEIS A050247; Rivera),并且 Sigma(n)/n 的值是 2, 38, 110, 3066, 60020, 740282, 2340038, 29380602, 957565746, ... (OEIS A050248; Rivera)。

1737 年,欧拉证明了素数调和级数(即,素数倒数之和)发散

 sum_(k=1)^infty1/(p_k)=infty
(3)

(Nagell 1951, p. 59; Hardy 和 Wright 1979, pp. 17 和 22),尽管它发散得非常缓慢。

一个快速收敛的梅尔滕斯常数级数

 B_1=gamma+sum_(k=1)^infty[ln(1-p_k^(-1))+1/(p_k)]
(4)

由下式给出

 B_1=gamma+sum_(m=2)^infty(mu(m))/mln[zeta(m)],
(5)

其中 gamma欧拉-马歇罗尼常数zeta(n)黎曼 zeta 函数,并且 mu(n)莫比乌斯函数 (Flajolet 和 Vardi 1996, Schroeder 1997, Knuth 1998)。

狄利克雷证明了更强的结果,即

 sum_(prime p=b (mod a); (a,b)=1)1/p=infty
(6)

(Davenport 1980, p. 34)。尽管素数倒数之和发散,但交错级数

 sum_(k=1)^infty((-1)^k)/(p_k) approx -0.2696063519
(7)

(OEIS A078437) 收敛 (Robinson 和 Potter 1971),但尚不清楚总和

 sum_(k=1)^infty(-1)^kk/(p_k)
(8)

是否收敛 (Guy 1994, p. 203; Erdős 1998; Finch 2003)。

还有一些素数倒数和的类别,其符号由 k 上的同余式确定,例如

 sum_(k=2)^infty(c_k)/(p_k) approx 0.3349813253
(9)

(OEIS A086239),其中

 c_k={-1   for p_k=1 (mod 4); 1   for p_k=3 (mod 4)
(10)

(Glaisher 1891b; Finch 2003; Jameson 2003, p. 177),

 sum_(k=2)^infty(c_k)/(p_k^2) approx 0.0946198928
(11)

(OEIS A086240; Glaisher 1893, Finch 2003), 和

 sum_(k=1)^infty(d_k)/(p_k) approx 0.6419448385
(12)

(OEIS A086241),其中

 d_k={-1   for p_k=1 (mod 3); 1   for p_k=2 (mod 3); 0   for p_k=0 (mod 3)
(13)

(Glaisher 1891c; Finch 2003; Jameson 2003, p. 177)。

虽然 sum1/p 发散,但 Brun (1919) 表明

 sum_(p,p+2 prime)1/p=B<infty,
(14)

其中

 B=1.902160583104...
(15)

(OEIS A065421) 是布朗常数

由下式定义的函数

 P(n)=sum_(k=1)^infty1/(p_k^n)
(16)

在素数上取值,对于 n>1 收敛,是 黎曼 zeta 函数的推广,被称为素数 zeta 函数

考虑正整数 n_o,其素数分解为

 n_o=p_1^(alpha_1)p_2^(alpha_2)...p_r^(alpha_r)
(17)

使得存在奇数个(不必不同的)素因子,即 sum_(k=1)^(r)alpha_k 是奇数。前几个这样的数字是 2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, ... (OEIS A026424)。那么

P_o(2p)=sum_(n_o)1/(n_o^(2p))
(18)
=1/(2^(2p))+1/(3^(2p))+1/(5^(2p))+1/(7^(2p))+1/(8^(2p))+...
(19)
=([zeta(2p)]^2-zeta(4p))/(2zeta(2p)),
(20)

(Gourdon 和 Sebah),其中 zeta(p)黎曼 zeta 函数。前几项是

P_o(2)=(pi^2)/(20)
(21)
P_o(4)=(pi^4)/(1260)
(22)
P_o(6)=(4pi^6)/(225225)
(23)
P_o(8)=(59pi^8)/(137837700)
(24)

(OEIS A093597A093598)。

考虑类似的求和,其中,此外,包含的项必须具有奇数个不同的素因子,即 sum_(k=1)^(r)alpha_k 是奇数,并且 max_(k)(alpha_k)=1。前几个这样的数字是 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, ... (OEIS A030059),其中包括合数 30, 42, 66, 70, 78, 102, ... (OEIS A093599)。那么

P_(od)(2p)=sum_(n_(od))1/(n_(od)^(2p))
(25)
=1/(2^(2p))+1/(3^(2p))+1/(5^(2p))+1/(7^(2p))+...+1/(30^(2p))+1/(31^(2p))+...
(26)
=([zeta(p)]^2-zeta(2p))/(2zeta(p)zeta(2p)),
(27)

(Gourdon 和 Sebah)。前几项是

P_(od)(2)=9/(2pi^2)
(28)
P_(od)(4)=(15)/(2pi^4)
(29)
P_(od)(6)=(11340)/(691pi^6)
(30)
P_(od)(8)=(278775)/(7234pi^8)
(31)

(OEIS A093595A093596)。

T=sum_(k=1)^(infty)1/((p_k-1)^2)
(32)
=sum_(k=2)^(infty)(phi_2(k)-phi(k))/kln[zeta(k)]
(33)
=1.3750649947...
(34)

(OEIS A086242) 也是有限的 (Glaisher 1891a; Cohen; Finch 2003),其中

 phi_l(k)=k^lproduct_(p|k)(1-1/(p^l)),
(35)

phi(n)欧拉函数,并且 zeta(k)黎曼 zeta 函数

素数 p 满足的一些有趣的求和包括

 sum_(k=1)^(p-1)|_(k^3)/p_|=((p-2)(p-1)(p+1))/4,
(36)

对于 p=2, 3, 5, ...,给出序列 0, 2, 18, 60, 270, 462, 1080, ... (OEIS A078837; Doster 1993)

 sum_(k=1)^((p-1)(p-2))|_(kp)^(1/3)_|=1/4(3p-5)(p-2)(p-1),
(37)

给出序列 0, 2, 30, 120, 630, 1122, 2760, ... (OEIS A078838; Doster 1993),

 sum_(i,j=1)^(p-1)|_(ij)/p_|=((p-1)^3-(p-1)^2)/4=((p-2)(p-1)^2)/4,
(38)

给出序列 0, 1, 12, 45, 225, 396, 960, 1377, ... (OEIS A331764; J.-C. Babois, 私人通信,2021 年 1 月 31 日),

sum_(k=1)^(infty)x^klnk=sum_(k=1)^(infty)(Lambda(k)x^k)/(1-x^k)
(39)
=sum_(p)lnpsum_(k=1)^(infty)(x^(p^k))/(1-x^(p^k)),
(40)

其中 Lambda(k)芒戈尔特函数,并且

 sum_(k=1)^infty(-1)^(k-1)e^(-kx)lnk=-ln2sum_(k=1)^infty1/(e^(2^kx)-1)+sum_(p>2)lnpsum_(k=1)^infty1/(e^(p^kx)+1)
(41)

(Berndt 1994, p. 114)。

f(n) 为整数 n 写成两个或多个连续素数之和的方式数。例如,5=2+3,所以 f(5)=1,并且 36=5+7+11+13=17+19,所以 f(36)=2f(n) 对于 n=1, 2, ... 的值序列由 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, ... (OEIS A084143) 给出。下表给出了前几个使得 f(n)>=k 对于小 kn

kOEIS使得 f(n)>=kn
1A0509365, 8, 10, 12, 15, 17, 18, 23, 24, 26, 28, 30, 31, 36, ...
2A06737236, 41, 60, 72, 83, 90, 100, 112, 119, ...
3A067373240, 287, 311, 340, 371, 510, 660, 803, ...

类似地,下表给出了前几个使得 f(n)=k 对于小 kn

kOEIS使得 f(n)=kn
1A0841465, 8, 10, 12, 15, 17, 18, 23, 24, 26, 28, 30, 31, 39, ...
2A08414736, 41, 60, 72, 83, 90, 100, 112, 119, 120, 138, ...
PrimeSumLn2

现在考虑数字 g(n),它是数字 n 表示为一个或多个连续素数之和的方式数(即,与之前相同的序列,但对于每个素数都大一个)。令人惊讶的是,结果表明

 lim_(n->infty)1/nsum_(k=1)^ng(k)=ln2
(42)

(Moser 1963; Le Lionnais 1983, p. 30)。


另请参阅

布朗常数, 素数调和级数, 梅尔滕斯常数, 梅尔滕斯第二定理, 素数公式, 素数, 素数积, 素数 Zeta 函数, 素数阶乘, 素因子之和

此条目的部分内容由 Jean-Claude Babois 贡献

使用 Wolfram|Alpha 探索

参考文献

Bach, E. 和 Shallit, J. §2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.Berndt, B. C. "Ramanujan's Theory of Prime Numbers." Ch. 24 in Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.Brun, V. "La serie 1/5+1/7+1/11+1/13+1/17+1/19+1/29+1/31+1/41+1/43+1/59+1/61+..., les dénominateurs sont nombres premiers jumeaux est convergente où finie." Bull. Sci. Math. 43, 124-128, 1919.Cohen, H. "High Precision Computation of Hardy-Littlewood Constants." Preprint. http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi.Davenport, H. Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, 1980.Doster, D. "Problem 10346." Amer. Math. Monthly 100, 951, 1993.Erdős, P. "Some of My New and Almost New Problems and Results in Combinatorial Number Theory." In Number Theory: Diophantine, Computational and Algebraic Aspects. Proceedings of the International Conference Held in Eger, July 29-August 2, 1996 (Ed. K. Győry, A. Pethő and V. T. Sós). Berlin: de Gruyter, pp. 169-180, 1998.Finch, S. R. "Meissel-Mertens Constants." §2.2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 94-98, 2003.Finch, S. "Two Asymptotic Series." December 10, 2003. http://algo.inria.fr/bsolve/.Flajolet, P. 和 Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.Glaisher, J. W. L. "On the Sums of the Inverse Powers of the Prime Numbers." Quart. J. Pure Appl. Math. 25, 347-362, 1891a.Glaisher, J. W. L. "On the Series 1/3-1/5+1/7+1/11-1/13-...." Quart. J. Pure Appl. Math. 25, 375-383, 1891b.Glaisher, J. W. L. "On the Series 1/2+1/5-1/7+1/11-1/13-...." Quart. J. Pure Appl. Math. 25, 48-65, 1891c.Glaisher, J. W. L. "On the Series 1/3^2-1/5^2+1/7^2+1/11^2-1/13-...." Quart. J. Pure Appl. Math. 26, 33-47, 1893.Gourdon, X. 和 Sebah, P. "Collection of Series for pi." http://numbers.computation.free.fr/Constants/Pi/piSeries.html.Guy, R. K. "A Series and a Sequence Involving Primes." §E7 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 203, 1994.Hardy, G. H. 和 Wright, E. M. "Prime Numbers" 和 "The Sequence of Primes." §1.2 和 1.4 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 1-4, 17, 22, and 251, 1979.Jameson, G. J. O. The Prime Number Theorem. Cambridge, England: Cambridge University Press, p. 177, 2003.Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 26, 30, and 46, 1983.Moree, P. "Approximation of Singular Series and Automata." Manuscripta Math. 101, 385-399, 2000.Moser, L. "Notes on Number Theory III. On the Sum of Consecutive Primes." Can. Math. Bull. 6, 159-161, 1963.Nagell, T. Introduction to Number Theory. New York: Wiley, 1951.Ramanujan, S. "Irregular Numbers." J. Indian Math. Soc. 5, 105-106, 1913. Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., pp. 20-21, 2000.Rivera, C. "Problems & Puzzles: Puzzle 031-The Average Prime Number, APN(k)=S(p_k)/k." http://www.primepuzzles.net/puzzles/puzz_031.htm.Robinson, H. P. 和 Potter, E. Mathematical Constants. Report UCRL-20418. Berkeley, CA: University of California, 1971.Schroeder, M. R. Number Theory in Science and Communication, with Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity, 3rd ed. New York: Springer-Verlag, 1997.Sloane, N. J. A. Sequences A007504/M1370, A013916, A013918, A030059, A045345, A046024, A050247, A050248, A050936, A065421, A067372, A067373, A078437, A078837, A078838, A084143, A084146, A084147, A086239, A086240, A086241, A086242, A093595, A093596, A093597, A093598, A093599, and A331764 in "The On-Line Encyclopedia of Integer Sequences."

在 Wolfram|Alpha 上被引用

素数和

请引用为

Babois, Jean-ClaudeWeisstein, Eric W. "素数和。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/PrimeSums.html

主题分类