关联勒让德多项式
和
推广了 勒让德多项式
,并且是 关联勒让德微分方程 的解,其中
是一个 正整数,且
, ...,
。它们在 Wolfram 语言 中以如下方式实现:LegendreP[l, m, x]。对于正
,它们可以用非关联多项式表示为:
其中
是非关联勒让德多项式。负
的关联勒让德多项式则定义为:
 |
(3)
|
对于关联勒让德多项式,有两种符号约定。一些作者(例如,Arfken 1985,第 668-669 页)省略了 Condon-Shortley 相位
,而另一些作者则包含它(例如,Abramowitz 和 Stegun 1972,Press et al. 1992,以及LegendrePWolfram 语言中的 [l, m, z] 命令)。因此,在比较从不同来源获得的多项式时需要谨慎。区分这两种约定的一种可能方法是 Abramowitz 和 Stegun (1972, 第 332 页) 提出的,他们使用了符号:
 |
(4)
|
来区分两者。
关联多项式有时被称为 Ferrers 函数(Sansone 1991,第 246 页)。如果
,它们简化为非关联 多项式。关联勒让德函数是 球谐函数 的一部分,球谐函数是 拉普拉斯方程 在 球坐标系 中的解。它们在
上关于权重函数 1 正交
 |
(5)
|
并且在
上关于权重函数
也 正交。
 |
(6)
|
关联勒让德多项式也服从以下 递推关系:
 |
(7)
|
令
(在此上下文中通常表示为
),
 |
(8)
|
 |
(9)
|
其他恒等式包括:
 |
(10)
|
 |
(11)
|
包括因子
,前几个关联勒让德多项式为:
用
(通常写作
)表示时,前几个变为:
原点附近的导数为:
![[(dP_nu^mu(x))/(dx)]_(x=0)=(2^(mu+1)sin[1/2pi(nu+mu)]Gamma(1/2nu+1/2mu+1))/(pi^(1/2)Gamma(1/2nu-1/2mu+1/2))](/images/equations/AssociatedLegendrePolynomial/NumberedEquation10.svg) |
(38)
|
(Abramowitz 和 Stegun 1972,第 334 页),对数导数为:
![[(dlnP_lambda^mu(z))/(dz)]_(z=0)=2tan[1/2pi(lambda+mu)]([1/2(lambda+mu)]![1/2(lambda-mu)]!)/([1/2(lambda+mu-1)]![1/2(lambda-mu-1)]!).](/images/equations/AssociatedLegendrePolynomial/NumberedEquation11.svg) |
(39)
|
(Binney 和 Tremaine 1987,第 654 页)。
另请参阅
关联勒让德微分方程,
Condon-Shortley 相位,
Gegenbauer 多项式,
第一类勒让德函数,
第二类勒让德函数,
勒让德多项式,
球谐函数,
环面函数
相关 Wolfram 站点
http://functions.wolfram.com/Polynomials/LegendreP2/
使用 探索
参考文献
Abramowitz, M. and Stegun, I. A. (Eds.). "Legendre Functions" and "Orthogonal Polynomials." Ch. 22 in Chs. 8 and 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 331-339 and 771-802, 1972.Arfken, G. "Legendre Functions." Ch. 12 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 637-711, 1985.Bailey, W. N. "On the Product of Two Legendre Polynomials." Proc. Cambridge Philos. Soc. 29, 173-177, 1933.Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, 1935.Byerly, W. E. "Zonal Harmonics." Ch. 5 in An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, pp. 144-194, 1959.Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, 1956.Iyanaga, S. and Kawada, Y. (Eds.). "Legendre Function" and "Associated Legendre Function." Appendix A, Tables 18.II and 18.III in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1462-1468, 1980.Koekoek, R. and Swarttouw, R. F. "Legendre / Spherical." §1.8.3 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its
-Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, p. 44, 1998.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.Lagrange, R. Polynomes et fonctions de Legendre. Paris: Gauthier-Villars, 1939.Legendre, A. M. "Sur l'attraction des Sphéroides." Mém. Math. et Phys. présentés à l'Ac. r. des. sc. par divers savants 10, 1785.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 593-597, 1953.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, p. 252, 1992.Sansone, G. "Expansions in Series of Legendre Polynomials and Spherical Harmonics." Ch. 3 in Orthogonal Functions, rev. English ed. New York: Dover, pp. 169-294, 1991.Sloane, N. J. A. Sequences A001790/M2508, A002596/M3768, A008316, A008317, A046161, A060818, A078297, and A078298 in "The On-Line Encyclopedia of Integer Sequences."Snow, C. Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory. Washington, DC: U. S. Government Printing Office, 1952.Spanier, J. and Oldham, K. B. "The Legendre Polynomials
" and "The Legendre Functions
and
." Chs. 21 and 59 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 183-192 and 581-597, 1987.Strutt, J. W. "On the Values of the Integral
,
,
being LaPlace's Coefficients of the orders
,
, with an Application to the Theory of Radiation." Philos. Trans. Roy. Soc. London 160, 579-590, 1870.Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.在 中被引用
关联勒让德多项式
请引用为
Weisstein, Eric W. "Associated Legendre Polynomial." 来自 Web 资源。 https://mathworld.net.cn/AssociatedLegendrePolynomial.html
学科分类