主题
Search

关联勒让德多项式


关联勒让德多项式 P_l^m(x)P_l^(-m)(x) 推广了 勒让德多项式 P_l(x),并且是 关联勒让德微分方程 的解,其中 l 是一个 正整数,且 m=0, ..., l。它们在 Wolfram 语言 中以如下方式实现:LegendreP[l, m, x]。对于正 m,它们可以用非关联多项式表示为:

P_l^m(x)=(-1)^m(1-x^2)^(m/2)(d^m)/(dx^m)P_l(x)
(1)
=((-1)^m)/(2^ll!)(1-x^2)^(m/2)(d^(l+m))/(dx^(l+m))(x^2-1)^l,
(2)

其中 P_l(x) 是非关联勒让德多项式。负 m 的关联勒让德多项式则定义为:

 P_l^(-m)(x)=(-1)^m((l-m)!)/((l+m)!)P_l^m(x).
(3)

对于关联勒让德多项式,有两种符号约定。一些作者(例如,Arfken 1985,第 668-669 页)省略了 Condon-Shortley 相位 (-1)^m,而另一些作者则包含它(例如,Abramowitz 和 Stegun 1972,Press et al. 1992,以及LegendrePWolfram 语言中的 [l, m, z] 命令)。因此,在比较从不同来源获得的多项式时需要谨慎。区分这两种约定的一种可能方法是 Abramowitz 和 Stegun (1972, 第 332 页) 提出的,他们使用了符号:

 P_(lm)(x)=(-1)^mP_l^m(x)
(4)

来区分两者。

关联多项式有时被称为 Ferrers 函数(Sansone 1991,第 246 页)。如果 m=0,它们简化为非关联 多项式。关联勒让德函数是 球谐函数 的一部分,球谐函数是 拉普拉斯方程球坐标系 中的解。它们在 [-1,1] 上关于权重函数 1 正交

 int_(-1)^1P_l^m(x)P_(l^')^m(x)dx=2/(2l+1)((l+m)!)/((l-m)!)delta_(ll^'),
(5)

并且在 [-1,1] 上关于权重函数 (1-x^2)^(-1)正交

 int_(-1)^1P_l^m(x)P_l^(m^')(x)(dx)/(1-x^2)=((l+m)!)/(m(l-m)!)delta_(mm^').
(6)

关联勒让德多项式也服从以下 递推关系

 (l-m)P_l^m(x)=x(2l-1)P_(l-1)^m(x)-(l+m-1)P_(l-2)^m(x).
(7)

x=costheta (在此上下文中通常表示为 mu),

 (dP_l^m(mu))/(dtheta)=(lmuP_l^m(mu)-(l+m)P_(l-1)^m(mu))/(sqrt(1-mu^2))
(8)
 (2l+1)muP_l^m(mu)=(l+m)P_(l-1)^m(mu)+(l-m+1)P_(l+1)^m(mu).
(9)

其他恒等式包括:

 P_l^l(x)=(-1)^l(2l-1)!!(1-x^2)^(l/2)
(10)
 P_(l+1)^l(x)=x(2l+1)P_l^l(x).
(11)

包括因子 (-1)^m,前几个关联勒让德多项式为:

P_0^0(x)=1
(12)
P_1^0(x)=x
(13)
P_1^1(x)=-(1-x^2)^(1/2)
(14)
P_2^0(x)=1/2(3x^2-1)
(15)
P_2^1(x)=-3x(1-x^2)^(1/2)
(16)
P_2^2(x)=3(1-x^2)
(17)
P_3^0(x)=1/2x(5x^2-3)
(18)
P_3^1(x)=3/2(1-5x^2)(1-x^2)^(1/2)
(19)
P_3^2(x)=15x(1-x^2)
(20)
P_3^3(x)=-15(1-x^2)^(3/2)
(21)
P_4^0(x)=1/8(35x^4-30x^2+3)
(22)
P_4^1(x)=5/2x(3-7x^2)(1-x^2)^(1/2)
(23)
P_4^2(x)=(15)/2(7x^2-1)(1-x^2)
(24)
P_4^3(x)=-105x(1-x^2)^(3/2)
(25)
P_4^4(x)=105(1-x^2)^2
(26)
P_5^0(x)=1/8x(63x^4-70x^2+15).
(27)

x=costheta (通常写作 mu=costheta)表示时,前几个变为:

P_0^0(costheta)=1
(28)
P_1^0(costheta)=costheta
(29)
P_1^1(costheta)=-sintheta
(30)
P_2^0(costheta)=1/2(3cos^2theta-1)
(31)
P_2^1(costheta)=-3sinthetacostheta
(32)
P_2^2(costheta)=3sin^2theta
(33)
P_3^0(costheta)=1/2costheta(5cos^2theta-3)
(34)
P_3^1(costheta)=-3/2(5cos^2theta-1)sintheta
(35)
P_3^2(costheta)=15costhetasin^2theta
(36)
P_3^3(costheta)=-15sin^3theta.
(37)

原点附近的导数为:

 [(dP_nu^mu(x))/(dx)]_(x=0)=(2^(mu+1)sin[1/2pi(nu+mu)]Gamma(1/2nu+1/2mu+1))/(pi^(1/2)Gamma(1/2nu-1/2mu+1/2))
(38)

(Abramowitz 和 Stegun 1972,第 334 页),对数导数为:

 [(dlnP_lambda^mu(z))/(dz)]_(z=0)=2tan[1/2pi(lambda+mu)]([1/2(lambda+mu)]![1/2(lambda-mu)]!)/([1/2(lambda+mu-1)]![1/2(lambda-mu-1)]!).
(39)

(Binney 和 Tremaine 1987,第 654 页)。


另请参阅

关联勒让德微分方程, Condon-Shortley 相位, Gegenbauer 多项式, 第一类勒让德函数, 第二类勒让德函数, 勒让德多项式, 球谐函数, 环面函数

相关 Wolfram 站点

http://functions.wolfram.com/Polynomials/LegendreP2/

使用 探索

参考文献

Abramowitz, M. and Stegun, I. A. (Eds.). "Legendre Functions" and "Orthogonal Polynomials." Ch. 22 in Chs. 8 and 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 331-339 and 771-802, 1972.Arfken, G. "Legendre Functions." Ch. 12 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 637-711, 1985.Bailey, W. N. "On the Product of Two Legendre Polynomials." Proc. Cambridge Philos. Soc. 29, 173-177, 1933.Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, 1935.Byerly, W. E. "Zonal Harmonics." Ch. 5 in An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, pp. 144-194, 1959.Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, 1956.Iyanaga, S. and Kawada, Y. (Eds.). "Legendre Function" and "Associated Legendre Function." Appendix A, Tables 18.II and 18.III in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1462-1468, 1980.Koekoek, R. and Swarttouw, R. F. "Legendre / Spherical." §1.8.3 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, p. 44, 1998.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.Lagrange, R. Polynomes et fonctions de Legendre. Paris: Gauthier-Villars, 1939.Legendre, A. M. "Sur l'attraction des Sphéroides." Mém. Math. et Phys. présentés à l'Ac. r. des. sc. par divers savants 10, 1785.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 593-597, 1953.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, p. 252, 1992.Sansone, G. "Expansions in Series of Legendre Polynomials and Spherical Harmonics." Ch. 3 in Orthogonal Functions, rev. English ed. New York: Dover, pp. 169-294, 1991.Sloane, N. J. A. Sequences A001790/M2508, A002596/M3768, A008316, A008317, A046161, A060818, A078297, and A078298 in "The On-Line Encyclopedia of Integer Sequences."Snow, C. Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory. Washington, DC: U. S. Government Printing Office, 1952.Spanier, J. and Oldham, K. B. "The Legendre Polynomials P_n(x)" and "The Legendre Functions P_nu(x) and Q_nu(x)." Chs. 21 and 59 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 183-192 and 581-597, 1987.Strutt, J. W. "On the Values of the Integral int_0^1Q_nQ_n^'dmu, Q_n, Q_n^' being LaPlace's Coefficients of the orders n, n^', with an Application to the Theory of Radiation." Philos. Trans. Roy. Soc. London 160, 579-590, 1870.Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

在 中被引用

关联勒让德多项式

请引用为

Weisstein, Eric W. "Associated Legendre Polynomial." 来自 Web 资源。 https://mathworld.net.cn/AssociatedLegendrePolynomial.html

学科分类