主题
Search

消趾函数


消趾函数(也称为锥削函数或窗函数)是一种用于在采样区域边缘将采样信号平滑降至零的函数。这抑制了在执行离散傅里叶变换时可能产生的泄漏旁瓣,但这种抑制是以加宽谱线为代价的,从而导致分辨率降低。

下面总结了一些用于对称(双边)干涉图的消趾函数,以及它们产生的仪器函数(或设备函数)和仪器函数旁瓣的放大图。给定消趾函数A(x)对应的仪器函数 I(k) 可以通过取有限傅里叶余弦变换来计算,

 I(k)=int_(-a)^acos(2pikx)A(x)dx.
(1)
InstrumentFunctions

其中

B_A(x)=(21)/(50)+1/2cos((pix)/a)+2/(25)cos((2pix)/a)
(2)
B_I(k)=(a((21)/(25)-9/(25)a^2k^2)sinc(2piak))/((1-a^2k^2)(1-4a^2k^2))
(3)
Hm_A(x)=(27)/(50)+(23)/(50)cos((pix)/a)
(4)
Hm_I(k)=(a((27)/(25)-(16)/(25)a^2k^2)sinc(2piak))/(1-4a^2k^2)
(5)
Hn_A(x)=cos^2((pix)/(2a))
(6)
=1/2[1+cos((pix)/a)]
(7)
Hn_I(k)=(asinc(2piak))/(1-4a^2k^2)
(8)
=a[sinc(2pika)+1/2sinc(2pika-pi)+1/2sinc(2pika+pi)]
(9)
W_I(k)=a2sqrt(2pi)(J_(3/2)(2pika))/((2pika)^(3/2))
(10)
=a(sin(2pika)-2piakcos(2piak))/(2a^3k^3pi^3).
(11)

下表总结了常用消趾函数的宽度、峰值和峰值旁瓣峰值(负和正)。

类型FWHM 仪器函数IF 峰值(peak (-) sidelobe)/(peak)(peak (+) sidelobe)/(peak)
Bartlett1.7717910.000000000.0471904
Blackman2.29880(21)/(25)-0.001067240.00124325
Connes1.90416(16)/(15)-0.04110490.0128926
余弦1.639414/pi-0.07080480.0292720
高斯--1----
Hamming1.81522(27)/(25)-0.006891320.00734934
Hanning2.000001-0.02670760.00843441
均匀1.206712-0.2172340.128375
Welch1.590444/3-0.08617130.0356044

一个通用的对称消趾函数 A(x) 可以写成傅里叶级数

 A(x)=a_0+2sum_(n=1)^inftya_ncos((npix)/b),
(12)

其中系数满足

 a_0+2sum_(n=1)^inftya_n=1.
(13)

相应的仪器函数

I(t)=int_(-b)^bA(x)e^(-2piikx)dx
(14)
=2b{a_0sinc(2pikb)+sum_(n=1)^(infty)[sinc(2pikb+npi)+sinc(2pikb-npi)]}.
(15)

要获得在 ka=3/4 处为零的消趾函数,请使用

 a_0sinc(3/2pi)+a_1[sinc(5/2pi)+sinc(1/2pi)]=0.
(16)

代入 (14),

 -(1-2a_1)2/(3pi)+a_1(2/(5pi)+2/pi)=-1/3(1-2a_1)+a_1(1/5+1)=0
(17)
 a_1(6/5+2/3)=1/3
(18)
a_1=(1/3)/(6/5+2/3)=5/(6·3+2·5)=5/(28)
(19)
a_0=1-2a_1=(28-2·5)/(28)=(18)/(28)=9/(14).
(20)

Hamming 函数接近于仪器函数在 ka=5/4 处变为 0 的要求,得到

a_0=(25)/(46) approx 0.5435
(21)
a_1=(21)/(92) approx 0.2283.
(22)

Blackman 函数的选择使得仪器函数在 ka=5/4ka=9/4 处变为 0,得到

a_0=(3969)/(9304) approx 0.42659
(23)
a_1=(1155)/(4652) approx 0.24828
(24)
a_2=(715)/(18608) approx 0.38424,
(25)

另请参阅

Bartlett 函数, Blackman 函数, Connes 函数, 余弦消趾函数, 半峰全宽, 高斯函数, Hamming 函数, Hanning 函数, 泄漏, Mertz 消趾函数, Parzen 消趾函数, 均匀消趾函数, Welch 消趾函数

使用 探索

参考文献

Ball, J. A. "The Spectral Resolution in a Correlator System" §4.3.5 in Astrophysics, Part C: Radio Observations (Ed. M. L. Meeks). New York: Academic Press, pp. 55-57, 1976.Blackman, R. B. and Tukey, J. W. "Particular Pairs of Windows." In The Measurement of Power Spectra, From the Point of View of Communications Engineering. New York: Dover, pp. 95-101, 1959.Brault, J. W. "Fourier Transform Spectrometry." In High Resolution in Astronomy: 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics (Ed. A. Benz, M. Huber, and M. Mayor). Geneva Observatory, Sauverny, Switzerland, pp. 31-32, 1985.Harris, F. J. "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform." Proc. IEEE 66, 51-83, 1978.Norton, R. H. and Beer, R. "New Apodizing Functions for Fourier Spectroscopy." J. Opt. Soc. Amer. 66, 259-264, 1976.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 547-548, 1992.Schnopper, H. W. and Thompson, R. I. "Fourier Spectrometers." In Astrophysics, Part A: Optical and Infrared (Ed. N. P. Carleton). New York: Academic Press, pp. 491-529, 1974.

在 中被引用

消趾函数

请引用为

Weisstein, Eric W. "消趾函数。" 来自 —— 资源。 https://mathworld.net.cn/ApodizationFunction.html

主题分类