Blaschke, W. "Über affine Geometrie XI: Lösung des 'Vierpunktproblems' von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten." Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-Phys. Kl.69, 436-453, 1917.Buchta, C. and Reitzner, M. "What Is the Expected Volume of a Tetrahedron whose Vertices are Chosen at Random from a Given Tetrahedron." Anz. Österreich. Akad. Wiss. Math.-Natur. Kl.129, 63-68, 1992.Buchta, C. and Reitzner, M. "The Convex Hull of Random Points in a Tetrahedron: Solution of Blaschke's Problem and More General Results." J. reine angew. Math.536, 1-29, 2001.Croft, H. T.; Falconer, K. J.; and Guy, R. K. "Random Polygons and Polyhedra." §B5 in Unsolved Problems in Geometry. New York: Springer-Verlag, pp. 54-57, 1991.Do, K.-A. and Solomon, H. "A Simulation Study of Sylvester's Problem in Three Dimensions." J. Appl. Prob.23, 509-513, 1986.Klee, V. "What is the Expected Volume of a Simplex Whose Vertices are Chosen at Random from a Given Convex Body." Amer. Math. Monthly76, 286-288, 1969.Mannion, D. "The Volume of a Tetrahedron Whose Vertices Are Chosen at Random in the Interior of a Parent Tetrahedron." Adv. Appl. Prob.26, 577-596, 1994.Schneider, R. "Discrete Aspects of Stochastic Geometry." Ch. 9 in Handbook of Discrete and Computational Geometry (Ed. J. E. Goodman and J. O'Rourke). Boca Raton, FL: CRC Press, pp. 167-184, 1997.Sloane, N. J. A. Sequence A093525 in "The On-Line Encyclopedia of Integer Sequences."Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, p. 124, 1978.Zinani, A. "The Expected Volume of a Tetrahedron Whose Vertices are Chosen at Random in the Interior of a Cube." Monatshefte Math.139, 341-348, 2003.