开普勒方程给出了天体(如行星)的极坐标与从给定初始点起经过的时间之间的关系。开普勒方程在天体力学中具有 фундаментальное 重要性,但不能用简单函数直接反解,以确定行星在给定时间的位置。
设
为平近点角(时间的参数化),
为在椭圆上以离心率
运行的物体的偏近点角(极角的参数化),则
 |
(1)
|
对于不是
的倍数的
,开普勒方程具有唯一的解,但它是超越方程,因此不能直接反解并求解
以获得任意给定的
。然而,由于其在天体力学中的重要性,已经推导出了许多用于求解该方程的算法。
将
写成
的幂级数,得到
 |
(2)
|
其中系数由拉格朗日反演定理给出,为
![a_n=1/(2^(n-1)n!)sum_(k=0)^(|_n/2_|)(-1)^k(n; k)(n-2k)^(n-1)sin[(n-2k)M]](/images/equations/KeplersEquation/NumberedEquation3.svg) |
(3)
|
(Wintner 1941, Moulton 1970, Henrici 1974, Finch 2003)。令人惊讶的是,这个级数对于
 |
(4)
|
(OEIS A033259)发散,这个值被称为拉普拉斯极限。事实上,
作为几何级数收敛,其比率为
 |
(5)
|
(Finch 2003)。
还有一种用第一类贝塞尔函数表示的级数解,
 |
(6)
|
该级数对于所有
收敛,就像几何级数一样,其比率为
 |
(7)
|
该方程也可以通过令
为行星运动方向与矢径垂直方向之间的角来求解。然后
 |
(8)
|
或者,我们可以用中间变量
来定义 
 |
(9)
|
然后
![sin[1/2(v-E)]=sqrt(r/p)sin(1/2phi)sinv](/images/equations/KeplersEquation/NumberedEquation10.svg) |
(10)
|
![sin[1/2(v+E)]=sqrt(r/p)cos(1/2phi)sinv.](/images/equations/KeplersEquation/NumberedEquation11.svg) |
(11)
|
迭代方法,例如简单的
 |
(12)
|
其中
工作良好,牛顿法也是如此,
 |
(13)
|
拉普拉斯求解开普勒方程的公式开始发散的点被称为拉普拉斯极限。
另请参阅
偏近点角,
卡普坦级数,
拉普拉斯极限
在 中探索
参考文献
Belur, S. V. "Solution of Kepler's Equation by Newton-Raphson Method." http://www.geocities.com/SiliconValley/2902/kepler.htm.Colwell, P. Solving Kepler's Equation over Three Centuries. Richmond, VA: Willmann-Bell, 1993.Danby, J. M. Fundamentals of Celestial Mechanics, 2nd ed., rev. ed. Richmond, VA: Willmann-Bell, 1988.Dörrie, H. "The Kepler Equation." §81 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 330-334, 1965.Finch, S. R. "Laplace Limit Constant." §4.8 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 266-268, 2003.Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, pp. 101-102 and 123-124, 1980.Goursat, E. A Course in Mathematical Analysis, Vol. 2: Functions of a Complex Variable & Differential Equations. New York: Dover, p. 120, 1959.Henrici, P. Applied and Computational Complex Analysis, Vol. 1: Power Series-Integration-Conformal Mapping-Location of Zeros. New York: Wiley, 1974.Ioakimids, N. I. and Papadakis, K. E. "A New Simple Method for the Analytical Solution of Kepler's Equation." Celest. Mech. 35, 305-316, 1985.Ioakimids, N. I. and Papadakis, K. E. "A New Class of Quite Elementary Closed-Form Integrals Formulae for Roots of Nonlinear Systems." Appl. Math. Comput. 29, 185-196, 1989.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 36, 1983.Marion, J. B. and Thornton, S. T. "Kepler's Equations." §7.8 in Classical Dynamics of Particles & Systems, 3rd ed. San Diego, CA: Harcourt Brace Jovanovich, pp. 261-266, 1988.Moulton, F. R. An Introduction to Celestial Mechanics, 2nd rev. ed. New York: Dover, pp. 159-169, 1970.Montenbruck, O. and Pfleger, T. "Mathematical Treatment of Kepler's Equation." §4.3 in Astronomy on the Personal Computer, 4th ed. Berlin: Springer-Verlag, pp. 62-63 and 65-68, 2000.Plummer, H. An Introductory Treatise of Dynamical Astronomy. New York: Dover, 1960.Siewert, C. E. and Burniston, E. E. "An Exact Analytical Solution of Kepler's Equation." Celest. Mech. 6, 294-304, 1972.Sloane, N. J. A. Sequences A033259 and A085984 in "The On-Line Encyclopedia of Integer Sequences."Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.Wintner, A. The Analytic Foundations of Celestial Mechanics. Princeton, NJ: Princeton University Press, 1941.在 中被引用
开普勒方程
引用为
Weisstein, Eric W. "开普勒方程。" 来自 Web 资源。 https://mathworld.net.cn/KeplersEquation.html
学科分类