平面曲线是位于单个平面内的曲线。平面曲线可以是闭合的或开放的。由于某些原因而有趣且其性质已被研究的曲线被称为“特殊”曲线(Lawrence 1972)。一些最常见的开放曲线是直线、抛物线和双曲线,而一些最常见的闭合曲线是圆和椭圆。
平面曲线
另请参阅
代数曲线, 曲线, 薄片, 周长, 空间曲线, 球面曲线 在 MathWorld 课堂中探索此主题使用 Wolfram|Alpha 探索
参考文献
Archibald, R. C. "Curves." Encyclopædia Britannica, 14th ed.Archibald, R. C. "The Cardioide and Some of Its Related Curves." Inaugural dissertation der Mathematischen und Naturwissenschaftlichen Facultät der Kaiser-Wilhelms-Universität, Strassburg zur Erlangung der Doctorwürde. Strassburg, France: J. Singer, 1900.Coolidge, J. L. A Treatise on Algebraic Plane Curves. New York: Dover, p. 30, 1959.Gray, A. "Famous Plane Curves." Ch. 3 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 49-74, 1997.Hilbert, D. and Cohn-Vossen, S. "Plane Curves." §1 in Geometry and the Imagination. New York: Chelsea, pp. 1-7, 1999.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, 1972.Lockwood, E. H. A Book of Curves. Cambridge, England: Cambridge University Press, 1961.MacTutor History of Mathematics Archive. http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html.Shikin, E. V. Handbook and Atlas of Curves. Boca Raton, FL: CRC Press, 1995.Smith, D. E. "Certain Well-Known Curves." History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, pp. 326-331, 1958.Teixeira, F. G. Traité des courbes spéciales remarquables plane et gauches, 3 vols. Coimbra, Portugal, 1908-1915. Reprinted New York: Chelsea, 1971 and Paris: Gabay.Wassenaar, J. "2-D Curves." http://www.2dcurves.com/.Yates, R. C. A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, 1947.Zwikker, C. The Advanced Geometry of Plane Curves and Their Applications. New York: Dover, 1963.在 Wolfram|Alpha 中引用
平面曲线请引用为
韦斯坦因,埃里克·W. “平面曲线。” 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/PlaneCurve.html