主题
Search

平面曲线


PlaneCurves

平面曲线是位于单个平面内的曲线。平面曲线可以是闭合的或开放的。由于某些原因而有趣且其性质已被研究的曲线被称为“特殊”曲线(Lawrence 1972)。一些最常见的开放曲线是直线抛物线双曲线,而一些最常见的闭合曲线是椭圆


另请参阅

代数曲线, 曲线, 薄片, 周长, 空间曲线, 球面曲线 在 课堂中探索此主题

使用 探索

参考文献

Archibald, R. C. "Curves." Encyclopædia Britannica, 14th ed.Archibald, R. C. "The Cardioide and Some of Its Related Curves." Inaugural dissertation der Mathematischen und Naturwissenschaftlichen Facultät der Kaiser-Wilhelms-Universität, Strassburg zur Erlangung der Doctorwürde. Strassburg, France: J. Singer, 1900.Coolidge, J. L. A Treatise on Algebraic Plane Curves. New York: Dover, p. 30, 1959.Gray, A. "Famous Plane Curves." Ch. 3 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 49-74, 1997.Hilbert, D. and Cohn-Vossen, S. "Plane Curves." §1 in Geometry and the Imagination. New York: Chelsea, pp. 1-7, 1999.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, 1972.Lockwood, E. H. A Book of Curves. Cambridge, England: Cambridge University Press, 1961.MacTutor History of Mathematics Archive. http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html.Shikin, E. V. Handbook and Atlas of Curves. Boca Raton, FL: CRC Press, 1995.Smith, D. E. "Certain Well-Known Curves." History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, pp. 326-331, 1958.Teixeira, F. G. Traité des courbes spéciales remarquables plane et gauches, 3 vols. Coimbra, Portugal, 1908-1915. Reprinted New York: Chelsea, 1971 and Paris: Gabay.Wassenaar, J. "2-D Curves." http://www.2dcurves.com/.Yates, R. C. A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, 1947.Zwikker, C. The Advanced Geometry of Plane Curves and Their Applications. New York: Dover, 1963.

在 中引用

平面曲线

请引用为

韦斯坦因,埃里克·W. “平面曲线。” 来自 —— 资源。 https://mathworld.net.cn/PlaneCurve.html

学科分类